Source code for sparknlp.annotator.audio.whisper_for_ctc

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Contains classes concerning WhisperForCTC."""

from sparknlp.common import *


[docs]class WhisperForCTC(AnnotatorModel, HasBatchedAnnotateAudio, HasAudioFeatureProperties, HasEngine, HasGeneratorProperties): """Whisper Model with a language modeling head on top for Connectionist Temporal Classification (CTC). Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. It transcribe in multiple languages, as well as translate from those languages into English. The audio needs to be provided pre-processed an array of floats. Note that at the moment, this annotator only supports greedy search and only Spark Versions 3.4 and up are supported. For multilingual models, the language and the task (transcribe or translate) can be set with ``setLanguage`` and ``setTask``. Pretrained models can be loaded with ``pretrained`` of the companion object: .. code-block:: python speechToText = WhisperForCTC.pretrained() \\ .setInputCols(["audio_assembler"]) \\ .setOutputCol("text") The default model is ``"asr_whisper_tiny_opt"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see `WhisperForCTCTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/audio/WhisperForCTCTest.scala>`__. **References:** `Robust Speech Recognition via Large-Scale Weak Supervision <https://arxiv.org/abs/2212.04356>`__ **Paper Abstract:** *We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero- shot transfer setting without the need for any fine- tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.* ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``AUDIO`` ``DOCUMENT`` ====================== ====================== Parameters ---------- task The formatted task for the audio. Either `<|translate|>` or `<|transcribe|>`. language The language for the audio, formatted to e.g. `<|en|>`. Check the model description for supported languages. isMultilingual Whether the model is multilingual minOutputLength Minimum length of the sequence to be generated maxOutputLength Maximum length of output text doSample Whether or not to use sampling; use greedy decoding otherwise temperature The value used to module the next token probabilities topK The number of highest probability vocabulary tokens to keep for top-k-filtering topP If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation repetitionPenalty The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details noRepeatNgramSize If set to int > 0, all ngrams of that size can only occur once beamSize The Number of beams for beam search Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> audioAssembler = AudioAssembler() \\ ... .setInputCol("audio_content") \\ ... .setOutputCol("audio_assembler") >>> speechToText = WhisperForCTC.pretrained() \\ ... .setInputCols(["audio_assembler"]) \\ ... .setOutputCol("text") >>> pipeline = Pipeline().setStages([audioAssembler, speechToText]) >>> processedAudioFloats = spark.createDataFrame([[rawFloats]]).toDF("audio_content") >>> result = pipeline.fit(processedAudioFloats).transform(processedAudioFloats) >>> result.select("text.result").show(truncate = False) +------------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------------+ |[ Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.]| +------------------------------------------------------------------------------------------+ """ name = "WhisperForCTC" inputAnnotatorTypes = [AnnotatorType.AUDIO] outputAnnotatorType = AnnotatorType.DOCUMENT configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with " "config_proto.SerializeToString()", TypeConverters.toListInt) language = Param(Params._dummy(), "language", "Optional parameter to set the language for the transcription.", typeConverter=TypeConverters.toString) isMultilingual = Param(Params._dummy(), "isMultilingual", "Whether the model is multilingual.", typeConverter=TypeConverters.toBoolean)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def getLanguage(self): """Gets the langauge for the transcription.""" return self.getOrDefault(self.language)
[docs] def getIsMultilingual(self): """Gets whether the model is multilingual.""" return self.getOrDefault(self.isMultilingual)
[docs] def setLanguage(self, value): """Sets the language for the audio, formatted to e.g. `<|en|>`. Check the model description for supported languages. Parameters ---------- value : String Formatted language code """ return self._call_java("setLanguage", value)
[docs] def setTask(self, value): """Sets the formatted task for the audio. Either `<|translate|>` or `<|transcribe|>`. Only multilingual models can do translation. Parameters ---------- value : String Formatted task """ return self._call_java("setTask", value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.audio.WhisperForCTC", java_model=None): super(WhisperForCTC, self).__init__( classname=classname, java_model=java_model ) self._setDefault( minOutputLength=0, maxOutputLength=448, doSample=False, temperature=1.0, topK=1, topP=1.0, repetitionPenalty=1.0, noRepeatNgramSize=0, batchSize=2, beamSize=1, nReturnSequences=1, isMultilingual=True, ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- WhisperForCTC The restored model """ from sparknlp.internal import _WhisperForCTC jModel = _WhisperForCTC(folder, spark_session._jsparkSession)._java_obj return WhisperForCTC(java_model=jModel)
@staticmethod
[docs] def pretrained(name="asr_whisper_tiny_opt", lang="xx", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "asr_hubert_large_ls960" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- WhisperForCTC The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(WhisperForCTC, name, lang, remote_loc)