Source code for sparknlp.annotator.classifier_dl.albert_for_zero_shot_classification

#  Copyright 2017-2024 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Contains classes for AlbertForZeroShotClassification."""

from sparknlp.common import *


[docs]class AlbertForZeroShotClassification(AnnotatorModel, HasCaseSensitiveProperties, HasBatchedAnnotate, HasClassifierActivationProperties, HasCandidateLabelsProperties, HasEngine, HasMaxSentenceLengthLimit): """AlbertForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language inference) tasks. Equivalent of `DistilBertForSequenceClassification` models, but these models don't require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more flexible. Note that the model will loop through all provided labels. So the more labels you have, the longer this process will take. Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis pair and passed to the pretrained model. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> sequenceClassifier = AlbertForZeroShotClassification.pretrained() \\ ... .setInputCols(["token", "document"]) \\ ... .setOutputCol("label") The default model is ``"albert_base_zero_shot_classifier_onnx"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.orgtask=Text+Classification>`__. To see which models are compatible and how to import them see `Import Transformers into Spark NLP 🚀 <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT, TOKEN`` ``CATEGORY`` ====================== ====================== Parameters ---------- batchSize Batch size. Large values allows faster processing but requires more memory, by default 8 caseSensitive Whether to ignore case in tokens for embeddings matching, by default True configProtoBytes ConfigProto from tensorflow, serialized into byte array. maxSentenceLength Max sentence length to process, by default 128 coalesceSentences Instead of 1 class per sentence (if inputCols is `sentence`) output 1 class per document by averaging probabilities in all sentences, by default False activation Whether to calculate logits via Softmax or Sigmoid, by default `"softmax"`. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> tokenizer = Tokenizer() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("token") >>> sequenceClassifier = AlbertForZeroShotClassification.pretrained() \\ ... .setInputCols(["token", "document"]) \\ ... .setOutputCol("label") \\ ... .setCaseSensitive(True) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... tokenizer, ... sequenceClassifier ... ]) >>> data = spark.createDataFrame([["I have a problem with my iphone that needs to be resolved asap!!"]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("label.result").show(truncate=False) +---------+ |result | +---------+ |[urgent] | +---------+ """ name = "AlbertForZeroShotClassification" inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN] outputAnnotatorType = AnnotatorType.CATEGORY configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt) coalesceSentences = Param(Params._dummy(), "coalesceSentences", "Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.", TypeConverters.toBoolean)
[docs] def getClasses(self): """ Returns labels used to train this model """ return self._call_java("getClasses")
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setCoalesceSentences(self, value): """Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as Bart (512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities for the entire document instead of probabilities per sentence. (Default: true) Parameters ---------- value : bool If the output of all sentences will be averaged to one output """ return self._set(coalesceSentences=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.AlbertForZeroShotClassification", java_model=None): super(AlbertForZeroShotClassification, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=8, maxSentenceLength=128, caseSensitive=True, coalesceSentences=False, activation="softmax" ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- AlbertForZeroShotClassification The restored model """ from sparknlp.internal import _AlbertForZeroShotClassificationLoader jModel = _AlbertForZeroShotClassificationLoader(folder, spark_session._jsparkSession)._java_obj return AlbertForZeroShotClassification(java_model=jModel)
@staticmethod
[docs] def pretrained(name="albert_zero_shot_classifier_onnx", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "albert_zero_shot_classifier_onnx" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- BartForZeroShotClassification The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(AlbertForZeroShotClassification, name, lang, remote_loc)