Source code for sparknlp.annotator.classifier_dl.multi_classifier_dl

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for MultiClassifierDL."""

from sparknlp.annotator.param import EvaluationDLParams, ClassifierEncoder
from sparknlp.annotator.classifier_dl import ClassifierDLModel
from sparknlp.common import *


[docs]class MultiClassifierDLApproach(AnnotatorApproach, EvaluationDLParams, ClassifierEncoder): """Trains a MultiClassifierDL for Multi-label Text Classification. MultiClassifierDL uses a Bidirectional GRU with a convolutional model that we have built inside TensorFlow and supports up to 100 classes. In machine learning, multi-label classification and the strongly related problem of multi-output classification are variants of the classification problem where multiple labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of more than two classes; in the multi-label problem there is no constraint on how many of the classes the instance can be assigned to. Formally, multi-label classification is the problem of finding a model that maps inputs x to binary vectors y (assigning a value of 0 or 1 for each element (label) in y). For instantiated/pretrained models, see :class:`.MultiClassifierDLModel`. The input to `MultiClassifierDL` are Sentence Embeddings such as the state-of-the-art :class:`.UniversalSentenceEncoder`, :class:`.BertSentenceEmbeddings`, :class:`.SentenceEmbeddings` or other sentence embeddings. Setting a test dataset to monitor model metrics can be done with ``.setTestDataset``. The method expects a path to a parquet file containing a dataframe that has the same required columns as the training dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe. The following example will show how to create the test dataset: >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> embeddings = UniversalSentenceEncoder.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("sentence_embeddings") >>> preProcessingPipeline = Pipeline().setStages([documentAssembler, embeddings]) >>> (train, test) = data.randomSplit([0.8, 0.2]) >>> preProcessingPipeline \\ ... .fit(test) \\ ... .transform(test) ... .write \\ ... .mode("overwrite") \\ ... .parquet("test_data") >>> multiClassifier = MultiClassifierDLApproach() \\ ... .setInputCols(["sentence_embeddings"]) \\ ... .setOutputCol("category") \\ ... .setLabelColumn("label") \\ ... .setTestDataset("test_data") For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/MultiClassifierDL_train_multi_label_E2E_challenge_classifier.ipynb>`__. ======================= ====================== Input Annotation types Output Annotation type ======================= ====================== ``SENTENCE_EMBEDDINGS`` ``CATEGORY`` ======================= ====================== Parameters ---------- batchSize Batch size, by default 64 configProtoBytes ConfigProto from tensorflow, serialized into byte array. enableOutputLogs Whether to use stdout in addition to Spark logs, by default False enableOutputLogs Whether to use stdout in addition to Spark logs. evaluationLogExtended Whether logs for validation to be extended: it displays time and evaluation of each label. Default is False. labelColumn Column with label per each token lr Learning Rate, by default 0.001 maxEpochs Maximum number of epochs to train, by default 10 outputLogsPath Folder path to save training logs randomSeed Random seed, by default 44 shufflePerEpoch whether to shuffle the training data on each Epoch, by default False testDataset Path to test dataset. If set used to calculate statistic on it during training. threshold The minimum threshold for each label to be accepted, by default 0.5 validationSplit Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off, by default 0.0 verbose Level of verbosity during training Notes ----- - This annotator requires an array of labels in type of String. - UniversalSentenceEncoder, BertSentenceEmbeddings, SentenceEmbeddings or other sentence embeddings can be used for the ``inputCol``. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline In this example, the training data has the form:: +----------------+--------------------+--------------------+ | id| text| labels| +----------------+--------------------+--------------------+ |ed58abb40640f983|PN NewsYou mean ... | [toxic]| |a1237f726b5f5d89|Dude. Place the ...| [obscene, insult]| |24b0d6c8733c2abe|Thanks - thanks ...| [insult]| |8c4478fb239bcfc0|" Gee, 5 minutes ...|[toxic, obscene, ...| +----------------+--------------------+--------------------+ Process training data to create text with associated array of labels: >>> trainDataset.printSchema() root |-- id: string (nullable = true) |-- text: string (nullable = true) |-- labels: array (nullable = true) | |-- element: string (containsNull = true) Then create pipeline for training: >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") \\ ... .setCleanupMode("shrink") >>> embeddings = UniversalSentenceEncoder.pretrained() \\ ... .setInputCols("document") \\ ... .setOutputCol("embeddings") >>> docClassifier = MultiClassifierDLApproach() \\ ... .setInputCols("embeddings") \\ ... .setOutputCol("category") \\ ... .setLabelColumn("labels") \\ ... .setBatchSize(128) \\ ... .setMaxEpochs(10) \\ ... .setLr(1e-3) \\ ... .setThreshold(0.5) \\ ... .setValidationSplit(0.1) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... embeddings, ... docClassifier ... ]) >>> pipelineModel = pipeline.fit(trainDataset) See Also -------- ClassifierDLApproach : for single-class classification SentimentDLApproach : for sentiment analysis """ inputAnnotatorTypes = [AnnotatorType.SENTENCE_EMBEDDINGS] outputAnnotatorType = AnnotatorType.CATEGORY shufflePerEpoch = Param(Params._dummy(), "shufflePerEpoch", "whether to shuffle the training data on each Epoch", TypeConverters.toBoolean) threshold = Param(Params._dummy(), "threshold", "The minimum threshold for each label to be accepted. Default is 0.5", TypeConverters.toFloat)
[docs] def setVerbose(self, v): """Sets level of verbosity during training. Parameters ---------- v : int Level of verbosity """ return self._set(verbose=v)
def setShufflePerEpoch(self, v): return self._set(shufflePerEpoch=v)
[docs] def setThreshold(self, v): """Sets minimum threshold for each label to be accepted, by default 0.5. Parameters ---------- v : float The minimum threshold for each label to be accepted, by default 0.5 """ self._set(threshold=v) return self
def _create_model(self, java_model): return ClassifierDLModel(java_model=java_model) @keyword_only def __init__(self): super(MultiClassifierDLApproach, self).__init__( classname="com.johnsnowlabs.nlp.annotators.classifier.dl.MultiClassifierDLApproach") self._setDefault( maxEpochs=10, lr=float(0.001), batchSize=64, validationSplit=float(0.0), threshold=float(0.5), randomSeed=44, shufflePerEpoch=False, enableOutputLogs=False
)
[docs]class MultiClassifierDLModel(AnnotatorModel, HasStorageRef, HasEngine): """MultiClassifierDL for Multi-label Text Classification. MultiClassifierDL Bidirectional GRU with Convolution model we have built inside TensorFlow and supports up to 100 classes. In machine learning, multi-label classification and the strongly related problem of multi-output classification are variants of the classification problem where multiple labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of more than two classes; in the multi-label problem there is no constraint on how many of the classes the instance can be assigned to. Formally, multi-label classification is the problem of finding a model that maps inputs x to binary vectors y (assigning a value of 0 or 1 for each element (label) in y). The input to ``MultiClassifierDL`` are Sentence Embeddings such as the state-of-the-art :class:`.UniversalSentenceEncoder`, :class:`.BertSentenceEmbeddings`, :class:`.SentenceEmbeddings` or other sentence embeddings. This is the instantiated model of the :class:`.MultiClassifierDLApproach`. For training your own model, please see the documentation of that class. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> multiClassifier = MultiClassifierDLModel.pretrained() \\ >>> .setInputCols(["sentence_embeddings"]) \\ >>> .setOutputCol("categories") The default model is ``"multiclassifierdl_use_toxic"``, if no name is provided. It uses embeddings from the UniversalSentenceEncoder and classifies toxic comments. The data is based on the `Jigsaw Toxic Comment Classification Challenge <https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview>`__. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Text+Classification>`__. For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/MultiClassifierDL_train_multi_label_E2E_challenge_classifier.ipynb>`__. ======================= ====================== Input Annotation types Output Annotation type ======================= ====================== ``SENTENCE_EMBEDDINGS`` ``CATEGORY`` ======================= ====================== Parameters ---------- configProtoBytes ConfigProto from tensorflow, serialized into byte array. threshold The minimum threshold for each label to be accepted, by default 0.5 classes Get the tags used to trained this MultiClassifierDLModel Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> useEmbeddings = UniversalSentenceEncoder.pretrained() \\ ... .setInputCols("document") \\ ... .setOutputCol("sentence_embeddings") >>> multiClassifierDl = MultiClassifierDLModel.pretrained() \\ ... .setInputCols("sentence_embeddings") \\ ... .setOutputCol("classifications") >>> pipeline = Pipeline() \\ ... .setStages([ ... documentAssembler, ... useEmbeddings, ... multiClassifierDl ... ]) >>> data = spark.createDataFrame([ ... ["This is pretty good stuff!"], ... ["Wtf kind of crap is this"] ... ]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("text", "classifications.result").show(truncate=False) +--------------------------+----------------+ |text |result | +--------------------------+----------------+ |This is pretty good stuff!|[] | |Wtf kind of crap is this |[toxic, obscene]| +--------------------------+----------------+ See Also -------- ClassifierDLModel : for single-class classification SentimentDLModel : for sentiment analysis """ name = "MultiClassifierDLModel" inputAnnotatorTypes = [AnnotatorType.SENTENCE_EMBEDDINGS] outputAnnotatorType = AnnotatorType.CATEGORY def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.MultiClassifierDLModel", java_model=None): super(MultiClassifierDLModel, self).__init__( classname=classname, java_model=java_model ) self._setDefault( threshold=float(0.5) ) configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt) threshold = Param(Params._dummy(), "threshold", "The minimum threshold for each label to be accepted. Default is 0.5", TypeConverters.toFloat) classes = Param(Params._dummy(), "classes", "get the tags used to trained this MultiClassifierDLModel", TypeConverters.toListString)
[docs] def setThreshold(self, v): """Sets minimum threshold for each label to be accepted, by default 0.5. Parameters ---------- v : float The minimum threshold for each label to be accepted, by default 0.5 """ self._set(threshold=v) return self
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@staticmethod
[docs] def pretrained(name="multiclassifierdl_use_toxic", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "multiclassifierdl_use_toxic" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- MultiClassifierDLModel The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(MultiClassifierDLModel, name, lang, remote_loc)