Source code for sparknlp.annotator.cv.internvl_for_multimodal

from sparknlp.common import *

[docs]class InternVLForMultiModal(AnnotatorModel, HasBatchedAnnotateImage, HasImageFeatureProperties, HasEngine, HasGeneratorProperties): """ InternVLForMultiModal can load InternVL Vision models for visual question answering. The model consists of a vision encoder, a text encoder, a text decoder and a model merger. The vision encoder will encode the input image, the text encoder will encode the input text, the model merger will merge the image and text embeddings, and the text decoder will output the answer. InternVL 2.5 is an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. Key features include: - Large context window support - Multilingual support - Multimodal capabilities handling both text and image inputs - Optimized for deployment with int4 quantization Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> visualQA = InternVLForMultiModal.pretrained() \\ ... .setInputCols("image_assembler") \\ ... .setOutputCol("answer") The default model is `"internvl2_5_1b_int4"`, if no name is provided. For available pretrained models, refer to the `Models Hub <https://sparknlp.org/models?task=Question+Answering>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``IMAGE`` ``DOCUMENT`` ====================== ====================== Parameters ---------- batchSize : int, optional Batch size. Larger values allow faster processing but require more memory, by default 1. maxSentenceLength : int, optional Maximum sentence length to process, by default 4096. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> from pyspark.sql.functions import lit >>> image_df = spark.read.format("image").load(path=images_path) >>> test_df = image_df.withColumn( ... "text", ... lit("<|im_start|><image>\\nDescribe this image in detail.<|im_end|><|im_start|>assistant\\n") ... ) >>> imageAssembler = ImageAssembler() \\ ... .setInputCol("image") \\ ... .setOutputCol("image_assembler") >>> visualQA = InternVLForMultiModal.pretrained() \\ ... .setInputCols("image_assembler") \\ ... .setOutputCol("answer") >>> pipeline = Pipeline().setStages([ ... imageAssembler, ... visualQA ... ]) >>> result = pipeline.fit(test_df).transform(test_df) >>> result.select("image_assembler.origin", "answer.result").show(truncate=False) """
[docs] name = "InternVLForMultiModal"
[docs] inputAnnotatorTypes = [AnnotatorType.IMAGE]
[docs] outputAnnotatorType = AnnotatorType.DOCUMENT
[docs] minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt)
[docs] maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt)
[docs] doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean)
[docs] temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat)
[docs] topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt)
[docs] topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", typeConverter=TypeConverters.toFloat)
[docs] repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", typeConverter=TypeConverters.toFloat)
[docs] noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt)
[docs] ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt)
[docs] beamSize = Param(Params._dummy(), "beamSize", "The Number of beams for beam search.", typeConverter=TypeConverters.toInt)
[docs] def setMaxSentenceSize(self, value): """Sets Maximum sentence length that the annotator will process, by default 4096. Parameters ---------- value : int Maximum sentence length that the annotator will process """ return self._set(maxSentenceLength=value)
[docs] def setIgnoreTokenIds(self, value): """A list of token ids which are ignored in the decoder's output. Parameters ---------- value : List[int] The words to be filtered out """ return self._set(ignoreTokenIds=value)
[docs] def setMinOutputLength(self, value): """Sets minimum length of the sequence to be generated. Parameters ---------- value : int Minimum length of the sequence to be generated """ return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value): """Sets maximum length of output text. Parameters ---------- value : int Maximum length of output text """ return self._set(maxOutputLength=value)
[docs] def setDoSample(self, value): """Sets whether or not to use sampling, use greedy decoding otherwise. Parameters ---------- value : bool Whether or not to use sampling; use greedy decoding otherwise """ return self._set(doSample=value)
[docs] def setTemperature(self, value): """Sets the value used to module the next token probabilities. Parameters ---------- value : float The value used to module the next token probabilities """ return self._set(temperature=value)
[docs] def setTopK(self, value): """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering. Parameters ---------- value : int Number of highest probability vocabulary tokens to keep """ return self._set(topK=value)
[docs] def setTopP(self, value): """Sets the top cumulative probability for vocabulary tokens. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. Parameters ---------- value : float Cumulative probability for vocabulary tokens """ return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value): """Sets the parameter for repetition penalty. 1.0 means no penalty. Parameters ---------- value : float The repetition penalty References ---------- See `Ctrl: A Conditional Transformer Language Model For Controllable Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value): """Sets size of n-grams that can only occur once. If set to int > 0, all ngrams of that size can only occur once. Parameters ---------- value : int N-gram size can only occur once """ return self._set(noRepeatNgramSize=value)
[docs] def setBeamSize(self, value): """Sets the number of beam size for beam search, by default `1`. Parameters ---------- value : int Number of beam size for beam search """ return self._set(beamSize=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.InternVLForMultiModal", java_model=None): super(InternVLForMultiModal, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=1, minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=-1, topP=0.9, repetitionPenalty=1.0, noRepeatNgramSize=3, ignoreTokenIds=[], beamSize=1 ) @staticmethod
[docs] def loadSavedModel(folder, spark_session, use_openvino=False): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- InternVLForMultiModal The restored model """ from sparknlp.internal import _InternVLForMultiModalLoader jModel = _InternVLForMultiModalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj return InternVLForMultiModal(java_model=jModel)
@staticmethod
[docs] def pretrained(name="internvl2_5_1b_int4", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "internvl2_5_1b_int4" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- InternVLForMultiModal The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(InternVLForMultiModal, name, lang, remote_loc)