Source code for sparknlp.annotator.cv.mllama_for_multimodal

#  Copyright 2017-2024 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from sparknlp.common import *

[docs]class MLLamaForMultimodal(AnnotatorModel, HasBatchedAnnotateImage, HasImageFeatureProperties, HasEngine, HasCandidateLabelsProperties, HasRescaleFactor): """ MLLamaForMultimodal can load LLAMA 3.2 Vision models for visual question answering. The model consists of a vision encoder, a text encoder, and a text decoder. The vision encoder encodes the input image, the text encoder processes the input question alongside the image encoding, and the text decoder generates the answer to the question. The Llama 3.2-Vision collection comprises pretrained and instruction-tuned multimodal large language models (LLMs) available in 11B and 90B sizes. These models are optimized for visual recognition, image reasoning, captioning, and answering general questions about images. The models outperform many open-source and proprietary multimodal models on standard industry benchmarks. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> visualQAClassifier = MLLamaForMultimodal.pretrained() \\ ... .setInputCols(["image_assembler"]) \\ ... .setOutputCol("answer") The default model is `"llama_3_2_11b_vision_instruct_int4"`, if no name is provided. For available pretrained models, refer to the `Models Hub <https://sparknlp.org/models?task=Question+Answering>`__. Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To check compatibility and learn how to import them, see `Import Transformers into Spark NLP 🚀 <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. For extended examples, refer to the `MLLamaForMultimodal Test Suite <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/MLLamaForMultimodalTest.scala>`_. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``IMAGE`` ``DOCUMENT`` ====================== ====================== Parameters ---------- batchSize : int, optional Batch size. Larger values allow faster processing but require more memory, by default 2. configProtoBytes : bytes, optional ConfigProto from TensorFlow, serialized into a byte array. maxSentenceLength : int, optional Maximum sentence length to process, by default 50. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> from pyspark.sql.functions import lit >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path) >>> test_df = image_df.withColumn( ... "text", ... lit("<|begin_of_text|><|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n<|image|>What is unusual on this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n") ... ) >>> imageAssembler = ImageAssembler() \\ ... .setInputCol("image") \\ ... .setOutputCol("image_assembler") >>> visualQAClassifier = MLLamaForMultimodal.pretrained() \\ ... .setInputCols("image_assembler") \\ ... .setOutputCol("answer") >>> pipeline = Pipeline().setStages([ ... imageAssembler, ... visualQAClassifier ... ]) >>> result = pipeline.fit(test_df).transform(test_df) >>> result.select("image_assembler.origin", "answer.result").show(truncate=False) +--------------------------------------+----------------------------------------------------------------------+ |origin |result | +--------------------------------------+----------------------------------------------------------------------+ |[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]| +--------------------------------------+----------------------------------------------------------------------+ """ name = "MLLamaForMultimodal" inputAnnotatorTypes = [AnnotatorType.IMAGE] outputAnnotatorType = AnnotatorType.DOCUMENT configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with " "config_proto.SerializeToString()", TypeConverters.toListInt) minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt) maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt) doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean) temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat) topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt) topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", typeConverter=TypeConverters.toFloat) repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", typeConverter=TypeConverters.toFloat) noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt) ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt) beamSize = Param(Params._dummy(), "beamSize", "The Number of beams for beam search.", typeConverter=TypeConverters.toInt)
[docs] def setMaxSentenceSize(self, value): """Sets Maximum sentence length that the annotator will process, by default 50. Parameters ---------- value : int Maximum sentence length that the annotator will process """ return self._set(maxSentenceLength=value)
[docs] def setIgnoreTokenIds(self, value): """A list of token ids which are ignored in the decoder's output. Parameters ---------- value : List[int] The words to be filtered out """ return self._set(ignoreTokenIds=value)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setMinOutputLength(self, value): """Sets minimum length of the sequence to be generated. Parameters ---------- value : int Minimum length of the sequence to be generated """ return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value): """Sets maximum length of output text. Parameters ---------- value : int Maximum length of output text """ return self._set(maxOutputLength=value)
[docs] def setDoSample(self, value): """Sets whether or not to use sampling, use greedy decoding otherwise. Parameters ---------- value : bool Whether or not to use sampling; use greedy decoding otherwise """ return self._set(doSample=value)
[docs] def setTemperature(self, value): """Sets the value used to module the next token probabilities. Parameters ---------- value : float The value used to module the next token probabilities """ return self._set(temperature=value)
[docs] def setTopK(self, value): """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering. Parameters ---------- value : int Number of highest probability vocabulary tokens to keep """ return self._set(topK=value)
[docs] def setTopP(self, value): """Sets the top cumulative probability for vocabulary tokens. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. Parameters ---------- value : float Cumulative probability for vocabulary tokens """ return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value): """Sets the parameter for repetition penalty. 1.0 means no penalty. Parameters ---------- value : float The repetition penalty References ---------- See `Ctrl: A Conditional Transformer Language Model For Controllable Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value): """Sets size of n-grams that can only occur once. If set to int > 0, all ngrams of that size can only occur once. Parameters ---------- value : int N-gram size can only occur once """ return self._set(noRepeatNgramSize=value)
[docs] def setBeamSize(self, value): """Sets the number of beam size for beam search, by default `4`. Parameters ---------- value : int Number of beam size for beam search """ return self._set(beamSize=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.MLLamaForMultimodal", java_model=None): super(MLLamaForMultimodal, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=1, minOutputLength=0, maxOutputLength=50, doSample=False, temperature=1, topK=50, topP=1, repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], beamSize=1, )
[docs] @staticmethod def loadSavedModel(folder, spark_session, use_openvino=False): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- CLIPForZeroShotClassification The restored model """ from sparknlp.internal import _MLLamaForMultimodalLoader jModel = _MLLamaForMultimodalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj return MLLamaForMultimodal(java_model=jModel)
[docs] @staticmethod def pretrained(name="llama_3_2_11b_vision_instruct_int4", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "llama_3_2_11b_vision_instruct_int4" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- MLLamaForMultimodal The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(MLLamaForMultimodal, name, lang, remote_loc)