Source code for sparknlp.annotator.cv.mllama_for_multimodal
# Copyright 2017-2024 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from sparknlp.common import *
[docs]class MLLamaForMultimodal(AnnotatorModel,
HasBatchedAnnotateImage,
HasImageFeatureProperties,
HasEngine,
HasCandidateLabelsProperties,
HasRescaleFactor):
"""
MLLamaForMultimodal can load LLAMA 3.2 Vision models for visual question answering.
The model consists of a vision encoder, a text encoder, and a text decoder.
The vision encoder encodes the input image, the text encoder processes the input question
alongside the image encoding, and the text decoder generates the answer to the question.
The Llama 3.2-Vision collection comprises pretrained and instruction-tuned multimodal large
language models (LLMs) available in 11B and 90B sizes. These models are optimized for visual
recognition, image reasoning, captioning, and answering general questions about images.
The models outperform many open-source and proprietary multimodal models on standard industry
benchmarks.
Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
>>> visualQAClassifier = MLLamaForMultimodal.pretrained() \\
... .setInputCols(["image_assembler"]) \\
... .setOutputCol("answer")
The default model is `"llama_3_2_11b_vision_instruct_int4"`, if no name is provided.
For available pretrained models, refer to the `Models Hub
<https://sparknlp.org/models?task=Question+Answering>`__.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀.
To check compatibility and learn how to import them, see `Import Transformers into Spark NLP 🚀
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. For extended examples, refer to
the `MLLamaForMultimodal Test Suite
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/MLLamaForMultimodalTest.scala>`_.
====================== ======================
Input Annotation types Output Annotation type
====================== ======================
``IMAGE`` ``DOCUMENT``
====================== ======================
Parameters
----------
batchSize : int, optional
Batch size. Larger values allow faster processing but require more memory,
by default 2.
configProtoBytes : bytes, optional
ConfigProto from TensorFlow, serialized into a byte array.
maxSentenceLength : int, optional
Maximum sentence length to process, by default 50.
Examples
--------
>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> from pyspark.sql.functions import lit
>>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
>>> test_df = image_df.withColumn(
... "text",
... lit("<|begin_of_text|><|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n<|image|>What is unusual on this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n")
... )
>>> imageAssembler = ImageAssembler() \\
... .setInputCol("image") \\
... .setOutputCol("image_assembler")
>>> visualQAClassifier = MLLamaForMultimodal.pretrained() \\
... .setInputCols("image_assembler") \\
... .setOutputCol("answer")
>>> pipeline = Pipeline().setStages([
... imageAssembler,
... visualQAClassifier
... ])
>>> result = pipeline.fit(test_df).transform(test_df)
>>> result.select("image_assembler.origin", "answer.result").show(truncate=False)
+--------------------------------------+----------------------------------------------------------------------+
|origin |result |
+--------------------------------------+----------------------------------------------------------------------+
|[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]|
+--------------------------------------+----------------------------------------------------------------------+
"""
name = "MLLamaForMultimodal"
inputAnnotatorTypes = [AnnotatorType.IMAGE]
outputAnnotatorType = AnnotatorType.DOCUMENT
configProtoBytes = Param(Params._dummy(),
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with "
"config_proto.SerializeToString()",
TypeConverters.toListInt)
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
typeConverter=TypeConverters.toInt)
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
typeConverter=TypeConverters.toInt)
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
typeConverter=TypeConverters.toBoolean)
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
typeConverter=TypeConverters.toFloat)
topK = Param(Params._dummy(), "topK",
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
typeConverter=TypeConverters.toInt)
topP = Param(Params._dummy(), "topP",
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
typeConverter=TypeConverters.toFloat)
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
typeConverter=TypeConverters.toFloat)
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
"If set to int > 0, all ngrams of that size can only occur once",
typeConverter=TypeConverters.toInt)
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
"A list of token ids which are ignored in the decoder's output",
typeConverter=TypeConverters.toListInt)
beamSize = Param(Params._dummy(), "beamSize",
"The Number of beams for beam search.",
typeConverter=TypeConverters.toInt)
[docs] def setMaxSentenceSize(self, value):
"""Sets Maximum sentence length that the annotator will process, by
default 50.
Parameters
----------
value : int
Maximum sentence length that the annotator will process
"""
return self._set(maxSentenceLength=value)
[docs] def setIgnoreTokenIds(self, value):
"""A list of token ids which are ignored in the decoder's output.
Parameters
----------
value : List[int]
The words to be filtered out
"""
return self._set(ignoreTokenIds=value)
[docs] def setConfigProtoBytes(self, b):
"""Sets configProto from tensorflow, serialized into byte array.
Parameters
----------
b : List[int]
ConfigProto from tensorflow, serialized into byte array
"""
return self._set(configProtoBytes=b)
[docs] def setMinOutputLength(self, value):
"""Sets minimum length of the sequence to be generated.
Parameters
----------
value : int
Minimum length of the sequence to be generated
"""
return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value):
"""Sets maximum length of output text.
Parameters
----------
value : int
Maximum length of output text
"""
return self._set(maxOutputLength=value)
[docs] def setDoSample(self, value):
"""Sets whether or not to use sampling, use greedy decoding otherwise.
Parameters
----------
value : bool
Whether or not to use sampling; use greedy decoding otherwise
"""
return self._set(doSample=value)
[docs] def setTemperature(self, value):
"""Sets the value used to module the next token probabilities.
Parameters
----------
value : float
The value used to module the next token probabilities
"""
return self._set(temperature=value)
[docs] def setTopK(self, value):
"""Sets the number of highest probability vocabulary tokens to keep for
top-k-filtering.
Parameters
----------
value : int
Number of highest probability vocabulary tokens to keep
"""
return self._set(topK=value)
[docs] def setTopP(self, value):
"""Sets the top cumulative probability for vocabulary tokens.
If set to float < 1, only the most probable tokens with probabilities
that add up to ``topP`` or higher are kept for generation.
Parameters
----------
value : float
Cumulative probability for vocabulary tokens
"""
return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value):
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
Parameters
----------
value : float
The repetition penalty
References
----------
See `Ctrl: A Conditional Transformer Language Model For Controllable
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
"""
return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value):
"""Sets size of n-grams that can only occur once.
If set to int > 0, all ngrams of that size can only occur once.
Parameters
----------
value : int
N-gram size can only occur once
"""
return self._set(noRepeatNgramSize=value)
[docs] def setBeamSize(self, value):
"""Sets the number of beam size for beam search, by default `4`.
Parameters
----------
value : int
Number of beam size for beam search
"""
return self._set(beamSize=value)
@keyword_only
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.MLLamaForMultimodal",
java_model=None):
super(MLLamaForMultimodal, self).__init__(
classname=classname,
java_model=java_model
)
self._setDefault(
batchSize=1,
minOutputLength=0,
maxOutputLength=50,
doSample=False,
temperature=1,
topK=50,
topP=1,
repetitionPenalty=1.0,
noRepeatNgramSize=0,
ignoreTokenIds=[],
beamSize=1,
)
[docs] @staticmethod
def loadSavedModel(folder, spark_session, use_openvino=False):
"""Loads a locally saved model.
Parameters
----------
folder : str
Folder of the saved model
spark_session : pyspark.sql.SparkSession
The current SparkSession
Returns
-------
CLIPForZeroShotClassification
The restored model
"""
from sparknlp.internal import _MLLamaForMultimodalLoader
jModel = _MLLamaForMultimodalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
return MLLamaForMultimodal(java_model=jModel)
[docs] @staticmethod
def pretrained(name="llama_3_2_11b_vision_instruct_int4", lang="en", remote_loc=None):
"""Downloads and loads a pretrained model.
Parameters
----------
name : str, optional
Name of the pretrained model, by default
"llama_3_2_11b_vision_instruct_int4"
lang : str, optional
Language of the pretrained model, by default "en"
remote_loc : str, optional
Optional remote address of the resource, by default None. Will use
Spark NLPs repositories otherwise.
Returns
-------
MLLamaForMultimodal
The restored model
"""
from sparknlp.pretrained import ResourceDownloader
return ResourceDownloader.downloadModel(MLLamaForMultimodal, name, lang, remote_loc)