Source code for sparknlp.annotator.cv.swin_for_image_classification

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Contains classes concerning SwinForImageClassification."""

from sparknlp.common import *


[docs]class SwinForImageClassification(AnnotatorModel, HasBatchedAnnotateImage, HasImageFeatureProperties, HasRescaleFactor, HasEngine): """SwinImageClassification is an image classifier based on Swin. The Swin Transformer was proposed in Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. .. code-block:: python imageClassifier = SwinForImageClassification.pretrained() \\ .setInputCols(["image_assembler"]) \\ .setOutputCol("class") The default model is ``"image_classifier_swin_base_patch4_window7_224"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Image+Classification>`__. Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see `SwinForImageClassificationTest <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/SwinForImageClassificationTest.scala>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``IMAGE`` ``CATEGORY`` ====================== ====================== **Paper Abstract:** *This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test- dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the- art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.* References ---------- `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/pdf/2103.14030.pdf>`__ Parameters ---------- doResize Whether to resize the input to a certain size doNormalize Whether to normalize the input with mean and standard deviation featureExtractorType Name of model's architecture for feature extraction imageMean The sequence of means for each channel, to be used when normalizing images imageStd The sequence of standard deviations for each channel, to be used when normalizing images resample An optional resampling filter. This can be one of `PIL.Image.NEAREST`, `PIL.Image.BILINEAR` or `PIL.Image.BICUBIC`. Only has an effect if do_resize is set to True. size Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True. doRescale Whether to rescale the image values by rescaleFactor rescaleFactor Factor to scale the image values configProtoBytes ConfigProto from tensorflow, serialized into byte array. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> imageDF = spark.read \\ ... .format("image") \\ ... .option("dropInvalid", value = True) \\ ... .load("src/test/resources/image/") >>> imageAssembler = ImageAssembler() \\ ... .setInputCol("image") \\ ... .setOutputCol("image_assembler") >>> imageClassifier = SwinForImageClassification \\ ... .pretrained() \\ ... .setInputCols(["image_assembler"]) \\ ... .setOutputCol("class") >>> pipeline = Pipeline().setStages([imageAssembler, imageClassifier]) >>> pipelineDF = pipeline.fit(imageDF).transform(imageDF) >>> pipelineDF \\ ... .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "class.result") \\ ... .show(truncate=False) +-----------------+----------------------------------------------------------+ |image_name |result | +-----------------+----------------------------------------------------------+ |palace.JPEG |[palace] | |egyptian_cat.jpeg|[tabby, tabby cat] | |hippopotamus.JPEG|[hippopotamus, hippo, river horse, Hippopotamus amphibius]| |hen.JPEG |[hen] | |ostrich.JPEG |[ostrich, Struthio camelus] | |junco.JPEG |[junco, snowbird] | |bluetick.jpg |[bluetick] | |chihuahua.jpg |[Chihuahua] | |tractor.JPEG |[tractor] | |ox.JPEG |[ox] | +-----------------+----------------------------------------------------------+ """ name = "SwinForImageClassification" inputAnnotatorTypes = [AnnotatorType.IMAGE] outputAnnotatorType = AnnotatorType.CATEGORY configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with " "config_proto.SerializeToString()", TypeConverters.toListInt)
[docs] def getClasses(self): """ Returns labels used to train this model """ return self._call_java("getClasses")
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.SwinForImageClassification", java_model=None): super(SwinForImageClassification, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=2, doNormalize=True, doRescale=True, doResize=True, imageMean=[0.485, 0.456, 0.406], imageStd=[0.229, 0.224, 0.225], resample=3, size=224, rescaleFactor=1 / 255.0 ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- SwinForImageClassification The restored model """ from sparknlp.internal import _SwinForImageClassification jModel = _SwinForImageClassification(folder, spark_session._jsparkSession)._java_obj return SwinForImageClassification(java_model=jModel)
@staticmethod
[docs] def pretrained(name="image_classifier_swin_base_patch4_window7_224", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "image_classifier_swin_base_patch4_window7_224" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- SwinForImageClassification The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(SwinForImageClassification, name, lang, remote_loc)