Source code for sparknlp.annotator.embeddings.albert_embeddings

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes concerning AlbertEmbeddings."""

from sparknlp.common import *


[docs]class AlbertEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasCaseSensitiveProperties, HasStorageRef, HasBatchedAnnotate, HasEngine, HasMaxSentenceLengthLimit): """ALBERT: A Lite Bert For Self-Supervised Learning Of Language Representations - Google Research, Toyota Technological Institute at Chicago These word embeddings represent the outputs generated by the Albert model. All official Albert releases by google in TF-HUB are supported with this Albert Wrapper: **Ported TF-Hub Models:** ============================ ============================================================== ===================================================== Model Name TF-Hub Model Model Properties ============================ ============================================================== ===================================================== ``"albert_base_uncased"`` `albert_base <https://tfhub.dev/google/albert_base/3>`__ 768-embed-dim, 12-layer, 12-heads, 12M parameters ``"albert_large_uncased"`` `albert_large <https://tfhub.dev/google/albert_large/3>`__ 1024-embed-dim, 24-layer, 16-heads, 18M parameters ``"albert_xlarge_uncased"`` `albert_xlarge <https://tfhub.dev/google/albert_xlarge/3>`__ 2048-embed-dim, 24-layer, 32-heads, 60M parameters ``"albert_xxlarge_uncased"`` `albert_xxlarge <https://tfhub.dev/google/albert_xxlarge/3>`__ 4096-embed-dim, 12-layer, 64-heads, 235M parameters ============================ ============================================================== ===================================================== This model requires input tokenization with SentencePiece model, which is provided by Spark-NLP (See tokenizers package). Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> embeddings = AlbertEmbeddings.pretrained() \\ ... .setInputCols(["sentence", "token"]) \\ ... .setOutputCol("embeddings") The default model is ``"albert_base_uncased"``, if no name is provided. For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_albert.ipynb>`__. To see which models are compatible and how to import them see `Import Transformers into Spark NLP 🚀 <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS`` ====================== ====================== Parameters ---------- batchSize Size of every batch, by default 8 dimension Number of embedding dimensions, by default 768 caseSensitive Whether to ignore case in tokens for embeddings matching, by default False configProtoBytes ConfigProto from tensorflow, serialized into byte array. maxSentenceLength Max sentence length to process, by default 128 Notes ----- ALBERT uses repeating layers which results in a small memory footprint, however the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers. References ---------- `ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS <https://arxiv.org/pdf/1909.11942.pdf>`__ https://github.com/google-research/ALBERT https://tfhub.dev/s?q=albert **Paper abstract:** *Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations and longer training times. To address these problems, we present two parameter reduction techniques to lower memory consumption and increase the training speed of BERT (Devlin et al., 2019). Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> tokenizer = Tokenizer() \\ ... .setInputCols(["document"]) \\ >>> embeddings = AlbertEmbeddings.pretrained() \\ ... .setInputCols(["token", "document"]) \\ ... .setOutputCol("embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \\ ... .setInputCols(["embeddings"]) \\ ... .setOutputCols("finished_embeddings") \\ ... .setOutputAsVector(True) \\ ... .setCleanAnnotations(False) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... tokenizer, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[1.1342473030090332,-1.3855540752410889,0.9818322062492371,-0.784737348556518...| |[0.847029983997345,-1.047153353691101,-0.1520637571811676,-0.6245765686035156...| |[-0.009860038757324219,-0.13450059294700623,2.707749128341675,1.2916892766952...| |[-0.04192575812339783,-0.5764210224151611,-0.3196685314178467,-0.527840495109...| |[0.15583214163780212,-0.1614152491092682,-0.28423872590065,-0.135491415858268...| +--------------------------------------------------------------------------------+ See Also -------- AlbertForTokenClassification : for AlbertEmbeddings with a token classification layer on top """ name = "AlbertEmbeddings" inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN] outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.AlbertEmbeddings", java_model=None): super(AlbertEmbeddings, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=8, dimension=768, maxSentenceLength=128, caseSensitive=False ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- AlbertEmbeddings The restored model """ from sparknlp.internal import _AlbertLoader jModel = _AlbertLoader(folder, spark_session._jsparkSession)._java_obj return AlbertEmbeddings(java_model=jModel)
@staticmethod
[docs] def pretrained(name="albert_base_uncased", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "albert_base_uncased" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- AlbertEmbeddings The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(AlbertEmbeddings, name, lang, remote_loc)