Source code for sparknlp.annotator.embeddings.distil_bert_embeddings

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for DistilBertEmbeddings."""

from sparknlp.common import *


[docs]class DistilBertEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasCaseSensitiveProperties, HasStorageRef, HasBatchedAnnotate, HasEngine, HasMaxSentenceLengthLimit): """DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than ``bert-base-uncased``, runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language understanding benchmark. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> embeddings = DistilBertEmbeddings.pretrained() \\ ... .setInputCols(["document", "token"]) \\ ... .setOutputCol("embeddings") The default model is ``"distilbert_base_cased"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Embeddings>`__. For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/HuggingFace%20in%20Spark%20NLP%20-%20DistilBERT.ipynb>`__. To see which models are compatible and how to import them see `Import Transformers into Spark NLP 🚀 <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS`` ====================== ====================== Parameters ---------- batchSize Size of every batch, by default 8 dimension Number of embedding dimensions, by default 768 caseSensitive Whether to ignore case in tokens for embeddings matching, by default False maxSentenceLength Max sentence length to process, by default 128 configProtoBytes ConfigProto from tensorflow, serialized into byte array. Notes ----- - DistilBERT doesn't have ``token_type_ids``, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token ``tokenizer.sep_token`` (or ``[SEP]``). - DistilBERT doesn't have options to select the input positions (``position_ids`` input). This could be added if necessary though, just let us know if you need this option. References ---------- The DistilBERT model was proposed in the paper `DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__. **Paper Abstract:** *As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP), operating these large models in on-the- edge and/or under constrained computational training or inference budgets remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage knowledge distillation during the pretraining phase and show that it is possible to reduce the size of a BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive biases learned by larger models during pretraining, we introduce a triple loss combining language modeling, distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device study.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> tokenizer = Tokenizer() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("token") >>> embeddings = DistilBertEmbeddings.pretrained() \\ ... .setInputCols(["document", "token"]) \\ ... .setOutputCol("embeddings") \\ ... .setCaseSensitive(True) >>> embeddingsFinisher = EmbeddingsFinisher() \\ ... .setInputCols(["embeddings"]) \\ ... .setOutputCols("finished_embeddings") \\ ... .setOutputAsVector(True) \\ ... .setCleanAnnotations(False) >>> pipeline = Pipeline() \\ ... .setStages([ ... documentAssembler, ... tokenizer, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[0.1127224713563919,-0.1982710212469101,0.5360898375511169,-0.272536993026733...| |[0.35534414649009705,0.13215228915214539,0.40981462597846985,0.14036104083061...| |[0.328085333108902,-0.06269335001707077,-0.017595693469047546,-0.024373905733...| |[0.15617232024669647,0.2967822253704071,0.22324979305267334,-0.04568954557180...| |[0.45411425828933716,0.01173491682857275,0.190129816532135,0.1178255230188369...| +--------------------------------------------------------------------------------+ """ name = "DistilBertEmbeddings" inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN] outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.DistilBertEmbeddings", java_model=None): super(DistilBertEmbeddings, self).__init__( classname=classname, java_model=java_model ) self._setDefault( dimension=768, batchSize=8, maxSentenceLength=128, caseSensitive=False ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- DistilBertEmbeddings The restored model """ from sparknlp.internal import _DistilBertLoader jModel = _DistilBertLoader(folder, spark_session._jsparkSession)._java_obj return DistilBertEmbeddings(java_model=jModel)
@staticmethod
[docs] def pretrained(name="distilbert_base_cased", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "distilbert_base_cased" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- DistilBertEmbeddings The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(DistilBertEmbeddings, name, lang, remote_loc)