# Copyright 2017-2022 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains classes for XlmRoBertaEmbeddings."""
from sparknlp.common import *
[docs]class XlmRoBertaEmbeddings(AnnotatorModel,
HasEmbeddingsProperties,
HasCaseSensitiveProperties,
HasStorageRef,
HasBatchedAnnotate,
HasEngine,
HasMaxSentenceLengthLimit):
"""The XLM-RoBERTa model was proposed in `Unsupervised Cross-lingual
Representation Learning at Scale` by Alexis Conneau, Kartikay Khandelwal,
Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard
Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
It is based on Facebook's RoBERTa model released in 2019. It is a large
multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data.
Pretrained models can be loaded with :meth:`.pretrained` of the companion
object:
>>> embeddings = XlmRoBertaEmbeddings.pretrained() \\
... .setInputCols(["document", "token"]) \\
... .setOutputCol("embeddings")
The default model is ``"xlm_roberta_base"``, default language is ``"xx"``
(meaning multi-lingual), if no values are provided. For available pretrained
models please see the `Models Hub
<https://sparknlp.org/models?task=Embeddings>`__.
For extended examples of usage, see the `Examples
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/HuggingFace%20in%20Spark%20NLP%20-%20XLM-RoBERTa.ipynb>`__.
To see which models are compatible and how to import them see
`Import Transformers into Spark NLP 🚀
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
====================== ======================
Input Annotation types Output Annotation type
====================== ======================
``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS``
====================== ======================
Parameters
----------
batchSize
Size of every batch, by default 8
dimension
Number of embedding dimensions, by default 768
caseSensitive
Whether to ignore case in tokens for embeddings matching, by default
True
maxSentenceLength
Max sentence length to process, by default 128
configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
Notes
-----
- XLM-RoBERTa is a multilingual model trained on 100 different languages.
Unlike some XLM multilingual models, it does not require **lang**
parameter to understand which language is used, and should be able to
determine the correct language from the input ids.
- This implementation is the same as RoBERTa. Refer to
:class:`.RoBertaEmbeddings` for usage examples as well as the information
relative to the inputs and outputs.
References
----------
`Unsupervised Cross-lingual
Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__
**Paper Abstract:**
*This paper shows that pretraining multilingual language models at scale
leads to significant performance gains for a wide range of cross-lingual
transfer tasks. We train a Transformer-based masked language model on one
hundred languages, using more than two terabytes of filtered CommonCrawl
data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT
(mBERT) on a variety of cross-lingual benchmarks, including +13.8% average
accuracy on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1
score on NER. XLM-R performs particularly well on low-resource languages,
improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the
previous XLM model. We also present a detailed empirical evaluation of the
key factors that are required to achieve these gains, including the
trade-offs between (1) positive transfer and capacity dilution and (2) the
performance of high and low resource languages at scale. Finally, we show,
for the first time, the possibility of multilingual modeling without
sacrificing per-language performance; XLM-Ris very competitive with strong
monolingual models on the GLUE and XNLI benchmarks. We will make XLM-R code,
data, and models publicly available.*
Examples
--------
>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \\
... .setInputCol("text") \\
... .setOutputCol("document")
>>> tokenizer = Tokenizer() \\
... .setInputCols(["document"]) \\
... .setOutputCol("token")
>>> embeddings = XlmRoBertaEmbeddings.pretrained() \\
... .setInputCols(["document", "token"]) \\
... .setOutputCol("embeddings") \\
... .setCaseSensitive(True)
>>> embeddingsFinisher = EmbeddingsFinisher() \\
... .setInputCols(["embeddings"]) \\
... .setOutputCols("finished_embeddings") \\
... .setOutputAsVector(True) \\
... .setCleanAnnotations(False)
>>> pipeline = Pipeline() \\
... .setStages([
... documentAssembler,
... tokenizer,
... embeddings,
... embeddingsFinisher
... ])
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
| result|
+--------------------------------------------------------------------------------+
|[-0.05969233065843582,-0.030789051204919815,0.04443822056055069,0.09564960747...|
|[-0.038839809596538544,0.011712731793522835,0.019954433664679527,0.0667808502...|
|[-0.03952755779027939,-0.03455188870429993,0.019103847444057465,0.04311436787...|
|[-0.09579929709434509,0.02494969218969345,-0.014753809198737144,0.10259044915...|
|[0.004710011184215546,-0.022148698568344116,0.011723337695002556,-0.013356896...|
+--------------------------------------------------------------------------------+
"""
name = "XlmRoBertaEmbeddings"
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS
configProtoBytes = Param(Params._dummy(),
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
TypeConverters.toListInt)
[docs] def setConfigProtoBytes(self, b):
"""Sets configProto from tensorflow, serialized into byte array.
Parameters
----------
b : List[int]
ConfigProto from tensorflow, serialized into byte array
"""
return self._set(configProtoBytes=b)
@keyword_only
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlmRoBertaEmbeddings", java_model=None):
super(XlmRoBertaEmbeddings, self).__init__(
classname=classname,
java_model=java_model
)
self._setDefault(
dimension=768,
batchSize=8,
maxSentenceLength=128,
caseSensitive=True
)
@staticmethod
[docs] def loadSavedModel(folder, spark_session, use_openvino=False):
"""Loads a locally saved model.
Parameters
----------
folder : str
Folder of the saved model
spark_session : pyspark.sql.SparkSession
The current SparkSession
use_openvino: bool
Use OpenVINO backend
Returns
-------
XlmRoBertaEmbeddings
The restored model
"""
from sparknlp.internal import _XlmRoBertaLoader
jModel = _XlmRoBertaLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
return XlmRoBertaEmbeddings(java_model=jModel)
@staticmethod
[docs] def pretrained(name="xlm_roberta_base", lang="xx", remote_loc=None):
"""Downloads and loads a pretrained model.
Parameters
----------
name : str, optional
Name of the pretrained model, by default "xlm_roberta_base"
lang : str, optional
Language of the pretrained model, by default "xx"
remote_loc : str, optional
Optional remote address of the resource, by default None. Will use
Spark NLPs repositories otherwise.
Returns
-------
XlmRoBertaEmbeddings
The restored model
"""
from sparknlp.pretrained import ResourceDownloader
return ResourceDownloader.downloadModel(XlmRoBertaEmbeddings, name, lang, remote_loc)