# Copyright 2017-2022 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains classes for XlmRoBertaSentenceEmbeddings."""
from sparknlp.common import *
[docs]class XlmRoBertaSentenceEmbeddings(AnnotatorModel,
HasEmbeddingsProperties,
HasCaseSensitiveProperties,
HasStorageRef,
HasBatchedAnnotate,
HasEngine,
HasMaxSentenceLengthLimit):
"""Sentence-level embeddings using XLM-RoBERTa. The XLM-RoBERTa model was proposed in Unsupervised Cross-lingual
Representation Learning at Scale by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,
Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based
on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of
filtered CommonCrawl data. Pretrained models can be loaded with pretrained of the companion object:
Pretrained models can be loaded with :meth:`.pretrained` of the companion
object:
>>> embeddings = XlmRoBertaSentenceEmbeddings.pretrained() \\
... .setInputCols(["sentence"]) \\
... .setOutputCol("sentence_embeddings")
The default model is ``"sent_xlm_roberta_base"``, if no name is provided.
For available pretrained models please see the
`Models Hub <https://sparknlp.org/models?task=Embeddings>`__.
====================== =======================
Input Annotation types Output Annotation type
====================== =======================
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
====================== =======================
Parameters
----------
batchSize
Size of every batch, by default 8
caseSensitive
Whether to ignore case in tokens for embeddings matching, by default
False
dimension
Number of embedding dimensions, by default 768
maxSentenceLength
Max sentence length to process, by default 128
configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
References
----------
`Unsupervised Cross-lingual Representation Learning at Scale <https://arxiv.org/pdf/1911.02116.pdf>`__
**Paper abstract:**
*This paper shows that pretraining multilingual language models at scale leads to significant performance gains
for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one
hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R,
significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8%
average accuracy on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R performs
particularly well on low-resource languages, improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over
the previous XLM model. We also present a detailed empirical evaluation of the key factors that are required to
achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the
performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of
multilingual modeling without sacrificing per-language performance; XLM-Ris very competitive with strong
monolingual models on the GLUE and XNLI benchmarks. We will make XLM-R code, data, and models publicly available.*
Examples
--------
>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \\
... .setInputCol("text") \\
... .setOutputCol("document")
>>> sentence = SentenceDetector() \\
... .setInputCols(["document"]) \\
... .setOutputCol("sentence")
>>> embeddings = XlmRoBertaSentenceEmbeddings.pretrained() \\
... .setInputCols(["sentence"]) \\
... .setOutputCol("sentence_embeddings")
>>> embeddingsFinisher = EmbeddingsFinisher() \\
... .setInputCols(["sentence_embeddings"]) \\
... .setOutputCols("finished_embeddings") \\
... .setOutputAsVector(True)
>>> pipeline = Pipeline().setStages([
... documentAssembler,
... sentence,
... embeddings,
... embeddingsFinisher
... ])
>>> data = spark.createDataFrame([["John loves apples. Mary loves oranges. John loves Mary."]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
| result|
+--------------------------------------------------------------------------------+
|[-0.8951074481010437,0.13753940165042877,0.3108254075050354,-1.65693199634552...|
|[-0.6180210709571838,-0.12179657071828842,-0.191165953874588,-1.4497021436691...|
|[-0.822715163230896,0.7568016648292542,-0.1165061742067337,-1.59048593044281,...|
+--------------------------------------------------------------------------------+
"""
name = "XlmRoBertaSentenceEmbeddings"
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
configProtoBytes = Param(Params._dummy(),
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
TypeConverters.toListInt)
[docs] def setConfigProtoBytes(self, b):
"""Sets configProto from tensorflow, serialized into byte array.
Parameters
----------
b : List[int]
ConfigProto from tensorflow, serialized into byte array
"""
return self._set(configProtoBytes=b)
@keyword_only
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.XlmRoBertaSentenceEmbeddings", java_model=None):
super(XlmRoBertaSentenceEmbeddings, self).__init__(
classname=classname,
java_model=java_model
)
self._setDefault(
dimension=768,
batchSize=8,
maxSentenceLength=128,
caseSensitive=True
)
@staticmethod
[docs] def loadSavedModel(folder, spark_session):
"""Loads a locally saved model.
Parameters
----------
folder : str
Folder of the saved model
spark_session : pyspark.sql.SparkSession
The current SparkSession
Returns
-------
BertSentenceEmbeddings
The restored model
"""
from sparknlp.internal import _XlmRoBertaSentenceLoader
jModel = _XlmRoBertaSentenceLoader(folder, spark_session._jsparkSession)._java_obj
return XlmRoBertaSentenceEmbeddings(java_model=jModel)
@staticmethod
[docs] def pretrained(name="sent_xlm_roberta_base", lang="xx", remote_loc=None):
"""Downloads and loads a pretrained model.
Parameters
----------
name : str, optional
Name of the pretrained model, by default "sent_xlm_roberta_base"
lang : str, optional
Language of the pretrained model, by default "xx"
remote_loc : str, optional
Optional remote address of the resource, by default None. Will use
Spark NLPs repositories otherwise.
Returns
-------
XlmRoBertaSentenceEmbeddings
The restored model
"""
from sparknlp.pretrained import ResourceDownloader
return ResourceDownloader.downloadModel(XlmRoBertaSentenceEmbeddings, name, lang, remote_loc)