Source code for sparknlp.annotator.matcher.text_matcher

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for the TextMatcher."""


from sparknlp.common import *


[docs]class TextMatcher(AnnotatorApproach): """Annotator to match exact phrases (by token) provided in a file against a Document. A text file of predefined phrases must be provided with :meth:`.setEntities`. For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/text-matcher-pipeline/extractor.ipynb>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT, TOKEN`` ``CHUNK`` ====================== ====================== Parameters ---------- entities ExternalResource for entities caseSensitive Whether to match regardless of case, by default True mergeOverlapping Whether to merge overlapping matched chunks, by default False entityValue Value for the entity metadata field buildFromTokens Whether the TextMatcher should take the CHUNK from TOKEN or not Examples -------- In this example, the entities file is of the form:: ... dolore magna aliqua lorem ipsum dolor. sit laborum ... where each line represents an entity phrase to be extracted. >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> tokenizer = Tokenizer() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("token") >>> data = spark.createDataFrame([["Hello dolore magna aliqua. Lorem ipsum dolor. sit in laborum"]]).toDF("text") >>> entityExtractor = TextMatcher() \\ ... .setInputCols(["document", "token"]) \\ ... .setEntities("src/test/resources/entity-extractor/test-phrases.txt", ReadAs.TEXT) \\ ... .setOutputCol("entity") \\ ... .setCaseSensitive(False) >>> pipeline = Pipeline().setStages([documentAssembler, tokenizer, entityExtractor]) >>> results = pipeline.fit(data).transform(data) >>> results.selectExpr("explode(entity) as result").show(truncate=False) +------------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------------+ |[chunk, 6, 24, dolore magna aliqua, [entity -> entity, sentence -> 0, chunk -> 0], []] | |[chunk, 27, 48, Lorem ipsum dolor. sit, [entity -> entity, sentence -> 0, chunk -> 1], []]| |[chunk, 53, 59, laborum, [entity -> entity, sentence -> 0, chunk -> 2], []] | +------------------------------------------------------------------------------------------+ See Also -------- BigTextMatcher : to match large amounts of text """ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN] outputAnnotatorType = AnnotatorType.CHUNK entities = Param(Params._dummy(), "entities", "ExternalResource for entities", typeConverter=TypeConverters.identity) caseSensitive = Param(Params._dummy(), "caseSensitive", "whether to match regardless of case. Defaults true", typeConverter=TypeConverters.toBoolean) mergeOverlapping = Param(Params._dummy(), "mergeOverlapping", "whether to merge overlapping matched chunks. Defaults false", typeConverter=TypeConverters.toBoolean) entityValue = Param(Params._dummy(), "entityValue", "value for the entity metadata field", typeConverter=TypeConverters.toString) buildFromTokens = Param(Params._dummy(), "buildFromTokens", "whether the TextMatcher should take the CHUNK from TOKEN or not", typeConverter=TypeConverters.toBoolean) @keyword_only def __init__(self): super(TextMatcher, self).__init__(classname="com.johnsnowlabs.nlp.annotators.TextMatcher") self._setDefault(inputCols=[AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]) self._setDefault(caseSensitive=True) self._setDefault(mergeOverlapping=False) def _create_model(self, java_model): return TextMatcherModel(java_model=java_model)
[docs] def setEntities(self, path, read_as=ReadAs.TEXT, options={"format": "text"}): """Sets the external resource for the entities. Parameters ---------- path : str Path to the external resource read_as : str, optional How to read the resource, by default ReadAs.TEXT options : dict, optional Options for reading the resource, by default {"format": "text"} """ return self._set(entities=ExternalResource(path, read_as, options.copy()))
[docs] def setCaseSensitive(self, b): """Sets whether to match regardless of case, by default True. Parameters ---------- b : bool Whether to match regardless of case """ return self._set(caseSensitive=b)
[docs] def setMergeOverlapping(self, b): """Sets whether to merge overlapping matched chunks, by default False. Parameters ---------- b : bool Whether to merge overlapping matched chunks """ return self._set(mergeOverlapping=b)
[docs] def setEntityValue(self, b): """Sets value for the entity metadata field. Parameters ---------- b : str Value for the entity metadata field """ return self._set(entityValue=b)
[docs] def setBuildFromTokens(self, b): """Sets whether the TextMatcher should take the CHUNK from TOKEN or not. Parameters ---------- b : bool Whether the TextMatcher should take the CHUNK from TOKEN or not """ return self._set(buildFromTokens=b)
[docs]class TextMatcherModel(AnnotatorModel): """Instantiated model of the TextMatcher. This is the instantiated model of the :class:`.TextMatcher`. For training your own model, please see the documentation of that class. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT, TOKEN`` ``CHUNK`` ====================== ====================== Parameters ---------- mergeOverlapping Whether to merge overlapping matched chunks, by default False entityValue Value for the entity metadata field buildFromTokens Whether the TextMatcher should take the CHUNK from TOKEN or not """ name = "TextMatcherModel" inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN] outputAnnotatorType = AnnotatorType.CHUNK mergeOverlapping = Param(Params._dummy(), "mergeOverlapping", "whether to merge overlapping matched chunks. Defaults false", typeConverter=TypeConverters.toBoolean) searchTrie = Param(Params._dummy(), "searchTrie", "searchTrie", typeConverter=TypeConverters.identity) entityValue = Param(Params._dummy(), "entityValue", "value for the entity metadata field", typeConverter=TypeConverters.toString) buildFromTokens = Param(Params._dummy(), "buildFromTokens", "whether the TextMatcher should take the CHUNK from TOKEN or not", typeConverter=TypeConverters.toBoolean) def __init__(self, classname="com.johnsnowlabs.nlp.annotators.TextMatcherModel", java_model=None): super(TextMatcherModel, self).__init__( classname=classname, java_model=java_model )
[docs] def setMergeOverlapping(self, b): """Sets whether to merge overlapping matched chunks, by default False. Parameters ---------- b : bool Whether to merge overlapping matched chunks """ return self._set(mergeOverlapping=b)
[docs] def setEntityValue(self, b): """Sets value for the entity metadata field. Parameters ---------- b : str Value for the entity metadata field """ return self._set(entityValue=b)
[docs] def setBuildFromTokens(self, b): """Sets whether the TextMatcher should take the CHUNK from TOKEN or not. Parameters ---------- b : bool Whether the TextMatcher should take the CHUNK from TOKEN or not """ return self._set(buildFromTokens=b)
@staticmethod
[docs] def pretrained(name, lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- TextMatcherModel The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(TextMatcherModel, name, lang, remote_loc)