Source code for sparknlp.annotator.ner.ner_approach

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains base classes for NER Annotators."""

from sparknlp.common import *


[docs]class NerApproach(Params): """Base class for Ner*Approach Annotators """ labelColumn = Param(Params._dummy(), "labelColumn", "Column with label per each token", typeConverter=TypeConverters.toString) entities = Param(Params._dummy(), "entities", "Entities to recognize", TypeConverters.toListString) minEpochs = Param(Params._dummy(), "minEpochs", "Minimum number of epochs to train", TypeConverters.toInt) maxEpochs = Param(Params._dummy(), "maxEpochs", "Maximum number of epochs to train", TypeConverters.toInt) randomSeed = Param(Params._dummy(), "randomSeed", "Random seed", TypeConverters.toInt)
[docs] def setLabelColumn(self, value): """Sets name of column for data labels. Parameters ---------- value : str Column for data labels """ return self._set(labelColumn=value)
[docs] def setEntities(self, tags): """Sets entities to recognize. Parameters ---------- tags : List[str] List of entities """ return self._set(entities=tags)
[docs] def setMinEpochs(self, epochs): """Sets minimum number of epochs to train. Parameters ---------- epochs : int Minimum number of epochs to train """ return self._set(minEpochs=epochs)
[docs] def setMaxEpochs(self, epochs): """Sets maximum number of epochs to train. Parameters ---------- epochs : int Maximum number of epochs to train """ return self._set(maxEpochs=epochs)
[docs] def setRandomSeed(self, seed): """Sets random seed for shuffling. Parameters ---------- seed : int Random seed for shuffling """ return self._set(randomSeed=seed)
[docs] def getLabelColumn(self): """Gets column for label per each token. Returns ------- str Column with label per each token """ return self.getOrDefault(self.labelColumn)