Source code for sparknlp.annotator.ner.ner_approach
# Copyright 2017-2022 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains base classes for NER Annotators."""
from sparknlp.common import *
[docs]class NerApproach(Params):
"""Base class for Ner*Approach Annotators
"""
labelColumn = Param(Params._dummy(),
"labelColumn",
"Column with label per each token",
typeConverter=TypeConverters.toString)
entities = Param(Params._dummy(), "entities", "Entities to recognize", TypeConverters.toListString)
minEpochs = Param(Params._dummy(), "minEpochs", "Minimum number of epochs to train", TypeConverters.toInt)
maxEpochs = Param(Params._dummy(), "maxEpochs", "Maximum number of epochs to train", TypeConverters.toInt)
randomSeed = Param(Params._dummy(), "randomSeed", "Random seed", TypeConverters.toInt)
[docs] def setLabelColumn(self, value):
"""Sets name of column for data labels.
Parameters
----------
value : str
Column for data labels
"""
return self._set(labelColumn=value)
[docs] def setEntities(self, tags):
"""Sets entities to recognize.
Parameters
----------
tags : List[str]
List of entities
"""
return self._set(entities=tags)
[docs] def setMinEpochs(self, epochs):
"""Sets minimum number of epochs to train.
Parameters
----------
epochs : int
Minimum number of epochs to train
"""
return self._set(minEpochs=epochs)
[docs] def setMaxEpochs(self, epochs):
"""Sets maximum number of epochs to train.
Parameters
----------
epochs : int
Maximum number of epochs to train
"""
return self._set(maxEpochs=epochs)
[docs] def setRandomSeed(self, seed):
"""Sets random seed for shuffling.
Parameters
----------
seed : int
Random seed for shuffling
"""
return self._set(randomSeed=seed)
[docs] def getLabelColumn(self):
"""Gets column for label per each token.
Returns
-------
str
Column with label per each token
"""
return self.getOrDefault(self.labelColumn)