Source code for sparknlp.annotator.param.classifier_encoder

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from sparknlp.common import *
from sparknlp.internal import ParamsGettersSetters


[docs]class ClassifierEncoder(ParamsGettersSetters): maxEpochs = Param(Params._dummy(), "maxEpochs", "Maximum number of epochs to train", TypeConverters.toInt) lr = Param(Params._dummy(), "lr", "Learning Rate", TypeConverters.toFloat) batchSize = Param(Params._dummy(), "batchSize", "Batch size", TypeConverters.toInt) labelColumn = Param(Params._dummy(), "labelColumn", "Column with label per each token", typeConverter=TypeConverters.toString) randomSeed = Param(Params._dummy(), "randomSeed", "Random seed", TypeConverters.toInt) configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt)
[docs] def setMaxEpochs(self, epochs): """Sets maximum number of epochs to train, by default 30 Parameters ---------- epochs : int Maximum number of epochs to train """ return self._set(maxEpochs=epochs)
[docs] def setLr(self, v): """Sets Learning Rate, by default 0.005 Parameters ---------- v : float Learning Rate """ self._set(lr=v) return self
[docs] def setBatchSize(self, v): """Sets batch size, by default 64. Parameters ---------- v : int Batch size """ self._set(batchSize=v) return self
[docs] def setLabelColumn(self, value): """Sets name of column for data labels Parameters ---------- value : str Column for data labels """ return self._set(labelColumn=value)
[docs] def setRandomSeed(self, seed): """Sets random seed for shuffling Parameters ---------- seed : int Random seed for shuffling """ return self._set(randomSeed=seed)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)