Source code for sparknlp.annotator.seq2seq.auto_gguf_reranker

#  Copyright 2017-2023 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for the AutoGGUFReranker."""
from typing import List, Dict

from sparknlp.common import *


[docs]class AutoGGUFReranker(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppProperties): """ Annotator that uses the llama.cpp library to rerank text documents based on their relevance to a given query using GGUF-format reranking models. This annotator is specifically designed for text reranking tasks, where multiple documents or text passages are ranked according to their relevance to a query. It uses specialized reranking models in GGUF format that output relevance scores for each input document. The reranker takes a query (set via :meth:`.setQuery`) and a list of documents, then returns the same documents with added metadata containing relevance scores. The documents are processed in batches and each receives a ``relevance_score`` in its metadata indicating how relevant it is to the provided query. For settable parameters, and their explanations, see the parameters of this class and refer to the llama.cpp documentation of `server.cpp <https://github.com/ggerganov/llama.cpp/tree/7d5e8777ae1d21af99d4f95be10db4870720da91/examples/server>`__ for more information. If the parameters are not set, the annotator will default to use the parameters provided by the model. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> reranker = AutoGGUFReranker.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("reranked_documents") \\ ... .setQuery("A man is eating pasta.") The default model is ``"bge-reranker-v2-m3-Q4_K_M"``, if no name is provided. For extended examples of usage, see the `AutoGGUFRerankerTest <https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/AutoGGUFRerankerTest.scala>`__ and the `example notebook <https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/llama.cpp/llama.cpp_in_Spark_NLP_AutoGGUFReranker.ipynb>`__. For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT`` ``DOCUMENT`` ====================== ====================== Parameters ---------- query The query to be used for reranking. If not set, the input text will be used as the query. nThreads Set the number of threads to use during generation nThreadsDraft Set the number of threads to use during draft generation nThreadsBatch Set the number of threads to use during batch and prompt processing nThreadsBatchDraft Set the number of threads to use during batch and prompt processing nCtx Set the size of the prompt context nBatch Set the logical batch size for prompt processing (must be >=32 to use BLAS) nUbatch Set the physical batch size for prompt processing (must be >=32 to use BLAS) nGpuLayers Set the number of layers to store in VRAM (-1 - use default) nGpuLayersDraft Set the number of layers to store in VRAM for the draft model (-1 - use default) gpuSplitMode Set how to split the model across GPUs mainGpu Set the main GPU that is used for scratch and small tensors. tensorSplit Set how split tensors should be distributed across GPUs grpAttnN Set the group-attention factor grpAttnW Set the group-attention width ropeFreqBase Set the RoPE base frequency, used by NTK-aware scaling ropeFreqScale Set the RoPE frequency scaling factor, expands context by a factor of 1/N yarnExtFactor Set the YaRN extrapolation mix factor yarnAttnFactor Set the YaRN scale sqrt(t) or attention magnitude yarnBetaFast Set the YaRN low correction dim or beta yarnBetaSlow Set the YaRN high correction dim or alpha yarnOrigCtx Set the YaRN original context size of model defragmentationThreshold Set the KV cache defragmentation threshold numaStrategy Set optimization strategies that help on some NUMA systems (if available) ropeScalingType Set the RoPE frequency scaling method, defaults to linear unless specified by the model poolingType Set the pooling type for embeddings, use model default if unspecified modelDraft Set the draft model for speculative decoding modelAlias Set a model alias lookupCacheStaticFilePath Set path to static lookup cache to use for lookup decoding (not updated by generation) lookupCacheDynamicFilePath Set path to dynamic lookup cache to use for lookup decoding (updated by generation) flashAttention Whether to enable Flash Attention inputPrefixBos Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string useMmap Whether to use memory-map model (faster load but may increase pageouts if not using mlock) useMlock Whether to force the system to keep model in RAM rather than swapping or compressing noKvOffload Whether to disable KV offload systemPrompt Set a system prompt to use chatTemplate The chat template to use inputPrefix Set the prompt to start generation with inputSuffix Set a suffix for infilling cachePrompt Whether to remember the prompt to avoid reprocessing it nPredict Set the number of tokens to predict topK Set top-k sampling topP Set top-p sampling minP Set min-p sampling tfsZ Set tail free sampling, parameter z typicalP Set locally typical sampling, parameter p temperature Set the temperature dynatempRange Set the dynamic temperature range dynatempExponent Set the dynamic temperature exponent repeatLastN Set the last n tokens to consider for penalties repeatPenalty Set the penalty of repeated sequences of tokens frequencyPenalty Set the repetition alpha frequency penalty presencePenalty Set the repetition alpha presence penalty miroStat Set MiroStat sampling strategies. mirostatTau Set the MiroStat target entropy, parameter tau mirostatEta Set the MiroStat learning rate, parameter eta penalizeNl Whether to penalize newline tokens nKeep Set the number of tokens to keep from the initial prompt seed Set the RNG seed nProbs Set the amount top tokens probabilities to output if greater than 0. minKeep Set the amount of tokens the samplers should return at least (0 = disabled) grammar Set BNF-like grammar to constrain generations penaltyPrompt Override which part of the prompt is penalized for repetition. ignoreEos Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf) disableTokenIds Set the token ids to disable in the completion stopStrings Set strings upon seeing which token generation is stopped samplers Set which samplers to use for token generation in the given order useChatTemplate Set whether or not generate should apply a chat template Notes ----- This annotator is designed for reranking tasks and requires setting a query using ``setQuery``. The query represents the search intent against which documents will be ranked. Each input document receives a relevance score in the output metadata. To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set the number of GPU layers with the `setNGpuLayers` method. When using larger models, we recommend adjusting GPU usage with `setNCtx` and `setNGpuLayers` according to your hardware to avoid out-of-memory errors. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> document = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> reranker = AutoGGUFReranker.pretrained("bge-reranker-v2-m3-Q4_K_M") \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("reranked_documents") \\ ... .setBatchSize(4) \\ ... .setQuery("A man is eating pasta.") >>> pipeline = Pipeline().setStages([document, reranker]) >>> data = spark.createDataFrame([ ... ["A man is eating food."], ... ["A man is eating a piece of bread."], ... ["The girl is carrying a baby."], ... ["A man is riding a horse."] ... ]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("reranked_documents").show(truncate = False) # Each document will have a relevance_score in metadata showing how relevant it is to the query """
[docs] name = "AutoGGUFReranker"
[docs] inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
[docs] outputAnnotatorType = AnnotatorType.DOCUMENT
[docs] query = Param(Params._dummy(), "query", "The query to be used for reranking. If not set, the input text will be used as the query.", typeConverter=TypeConverters.toString)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFReranker", java_model=None): super(AutoGGUFReranker, self).__init__( classname=classname, java_model=java_model ) self._setDefault( useChatTemplate=True, nCtx=4096, nBatch=512, nGpuLayers=99, systemPrompt="You are a helpful assistant.", query="" )
[docs] def setQuery(self, value: str): """Set the query to be used for reranking. Parameters ---------- value : str The query text that documents will be ranked against. Returns ------- AutoGGUFReranker This instance for method chaining. """ return self._set(query=value)
[docs] def getQuery(self): """Get the current query used for reranking. Returns ------- str The current query string. """ return self._call_java("getQuery")
@staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- AutoGGUFReranker The restored model """ from sparknlp.internal import _AutoGGUFRerankerLoader jModel = _AutoGGUFRerankerLoader(folder, spark_session._jsparkSession)._java_obj return AutoGGUFReranker(java_model=jModel)
@staticmethod
[docs] def pretrained(name="bge-reranker-v2-m3-Q4_K_M", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "bge-reranker-v2-m3-Q4_K_M" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- AutoGGUFReranker The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(AutoGGUFReranker, name, lang, remote_loc)