Source code for sparknlp.annotator.seq2seq.bart_transformer

#  Copyright 2017-2023 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for the BartTransformer."""

from sparknlp.common import *


[docs]class BartTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): """BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation. BART is unique in that it is both bidirectional and auto-regressive, meaning that it can generate text both from left-to-right and from right-to-left. This allows it to capture contextual information from both past and future tokens in a sentence,resulting in more accurate and natural language generation. The model was trained on a large corpus of text data using a combination of unsupervised and supervised learning techniques. It incorporates pretraining and fine-tuning phases, where the model is first trained on a large unlabeled corpus of text, and then fine-tuned on specific downstream tasks. BART has achieved state-of-the-art performance on a wide range of NLP tasks, including summarization, question-answering, and language translation. Its ability to handle multiple tasks and its high performance on each of these tasks make it a versatile and valuable tool for natural language processing applications. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> bart = BartTransformer.pretrained() \\ ... .setTask("summarize:") \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("summaries") The default model is ``"distilbart_xsum_12_6"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?q=bart>`__. For extended examples of usage, see the `BartTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/BartTestSpec.scala>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT`` ``DOCUMENT`` ====================== ====================== Parameters ---------- batchSize Batch Size, by default `1`. configProtoBytes ConfigProto from tensorflow, serialized into byte array. task Transformer's task, e.g. ``summarize:``, by default `""`. minOutputLength Minimum length of the sequence to be generated, by default `0`. maxOutputLength Maximum length of output text, by default `20`. doSample Whether or not to use sampling; use greedy decoding otherwise, by default `False`. temperature The value used to module the next token probabilities, by default `1.0`. topK The number of highest probability vocabulary tokens to keep for top-k-filtering, by default `50`. beamSize The number of beam size for beam search, by default `1`. topP Top cumulative probability for vocabulary tokens, by default `1.0`. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. repetitionPenalty The parameter for repetition penalty. 1.0 means no penalty, by default `1.0`. noRepeatNgramSize If set to int > 0, all ngrams of that size can only occur once, by default `0`. ignoreTokenIds A list of token ids which are ignored in the decoder's output, by default `[]`. useCache Whether or not to use cache, by default `False`. Notes ----- This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended. References ---------- - `Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension <https://arxiv.org/abs/1910.13461>`__ - https://github.com/pytorch/fairseq **Paper Abstract:** *We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. It uses a standard Tranformer-based neural machine translation architecture which, despite its simplicity, can be seen as generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and many other more recent pretraining schemes. We evaluate a number of noising approaches, finding the best performance by both randomly shuffling the order of the original sentences and using a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine translation, with only target language pretraining. We also report ablation experiments that replicate other pretraining schemes within the BART framework, to better measure which factors most influence end-task performance.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("documents") >>> bart = BartTransformer.pretrained("distilbart_xsum_12_6") \\ ... .setTask("summarize:") \\ ... .setInputCols(["documents"]) \\ ... .setMaxOutputLength(200) \\ ... .setOutputCol("summaries") >>> pipeline = Pipeline().setStages([documentAssembler, bart]) >>> data = spark.createDataFrame([[ ... "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a " + ... "downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness" + ... " of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this " + ... "paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework " + ... "that converts all text-based language problems into a text-to-text format. Our systematic study compares " + ... "pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens " + ... "of language understanding tasks. By combining the insights from our exploration with scale and our new " + ... "Colossal Clean Crawled Corpus, we achieve state-of-the-art results on many benchmarks covering " + ... "summarization, question answering, text classification, and more. To facilitate future work on transfer " + ... "learning for NLP, we release our data set, pre-trained models, and code." ... ]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("summaries.result").show(truncate=False) +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |result | +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |[transfer learning has emerged as a powerful technique in natural language processing (NLP) the effectiveness of transfer learning has given rise to a diversity of approaches, methodologies, and practice .]| +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ """ name = "BartTransformer" inputAnnotatorTypes = [AnnotatorType.DOCUMENT] outputAnnotatorType = AnnotatorType.DOCUMENT configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt) task = Param(Params._dummy(), "task", "Transformer's task, e.g. summarize>", typeConverter=TypeConverters.toString) minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt) maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt) doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean) temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat) topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt) topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", typeConverter=TypeConverters.toFloat) repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", typeConverter=TypeConverters.toFloat) noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt) ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt) beamSize = Param(Params._dummy(), "beamSize", "The Number of beams for beam search.", typeConverter=TypeConverters.toInt) useCache = Param(Params._dummy(), "useCache", "Use caching to enhance performance", typeConverter=TypeConverters.toBoolean)
[docs] def setIgnoreTokenIds(self, value): """A list of token ids which are ignored in the decoder's output, by default `[]`. Parameters ---------- value : List[int] The words to be filtered out """ return self._set(ignoreTokenIds=value)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setTask(self, value): """Sets the transformer's task, e.g. ``summarize:``, by default `""`. Parameters ---------- value : str The transformer's task """ return self._set(task=value)
[docs] def setMinOutputLength(self, value): """Sets minimum length of the sequence to be generated, by default `0`. Parameters ---------- value : int Minimum length of the sequence to be generated """ return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value): """Sets maximum length of output text, by default `20`. Parameters ---------- value : int Maximum length of output text """ return self._set(maxOutputLength=value)
[docs] def setDoSample(self, value): """Sets whether or not to use sampling, use greedy decoding otherwise, by default `False`. Parameters ---------- value : bool Whether or not to use sampling; use greedy decoding otherwise """ return self._set(doSample=value)
[docs] def setTemperature(self, value): """Sets the value used to module the next token probabilities, by default `1.0`. Parameters ---------- value : float The value used to module the next token probabilities """ return self._set(temperature=value)
[docs] def setTopK(self, value): """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering, by default `50`. Parameters ---------- value : int Number of highest probability vocabulary tokens to keep """ return self._set(topK=value)
[docs] def setTopP(self, value): """Sets the top cumulative probability for vocabulary tokens, by default `1.0`. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. Parameters ---------- value : float Cumulative probability for vocabulary tokens """ return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value): """Sets the parameter for repetition penalty. 1.0 means no penalty, by default `1.0`. Parameters ---------- value : float The repetition penalty References ---------- See `Ctrl: A Conditional Transformer Language Model For Controllable Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value): """Sets size of n-grams that can only occur once, by default `0`. If set to int > 0, all ngrams of that size can only occur once. Parameters ---------- value : int N-gram size can only occur once """ return self._set(noRepeatNgramSize=value)
[docs] def setBeamSize(self, value): """Sets the number of beam size for beam search, by default `4`. Parameters ---------- value : int Number of beam size for beam search """ return self._set(beamSize=value)
[docs] def setCache(self, value): """Sets whether or not to use caching to enhance performance, by default `False`. Parameters ---------- value : bool Whether or not to use caching to enhance performance """ return self._set(useCache=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.BartTransformer", java_model=None): super(BartTransformer, self).__init__( classname=classname, java_model=java_model ) self._setDefault( task="", minOutputLength=0, maxOutputLength=20, doSample=False, temperature=1.0, topK=50, topP=1.0, repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1, beamSize=4, useCache=False, ) @staticmethod
[docs] def loadSavedModel(folder, spark_session, use_cache=False): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession use_cache: bool The model uses caching to facilitate performance Returns ------- BartTransformer The restored model """ from sparknlp.internal import _BartLoader jModel = _BartLoader(folder, spark_session._jsparkSession, use_cache)._java_obj return BartTransformer(java_model=jModel)
@staticmethod
[docs] def pretrained(name="distilbart_xsum_12_6", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "distilbart_xsum_12_6" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- BartTransformer The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(BartTransformer, name, lang, remote_loc)