Source code for sparknlp.annotator.seq2seq.starcoder_transformer

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for the StarCoderTransformer."""

from sparknlp.common import *


[docs]class StarCoderTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): """StarCoder2: The Versatile Code Companion. StarCoder2 is a Transformer model designed specifically for code generation and understanding. With 13 billion parameters, it builds upon the advancements of its predecessors and is trained on a diverse dataset that includes multiple programming languages. This extensive training allows StarCoder2 to support a wide array of coding tasks, from code completion to generation. StarCoder2 was developed to assist developers in writing and understanding code more efficiently, making it a valuable tool for various software development and data science tasks. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> starcoder2 = StarCoder2Transformer.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("generation") The default model is ``"starcoder2-13b"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?q=starcoder2>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT`` ``DOCUMENT`` ====================== ====================== Parameters ---------- configProtoBytes ConfigProto from tensorflow, serialized into byte array. minOutputLength Minimum length of the sequence to be generated, by default 0 maxOutputLength Maximum length of output text, by default 20 doSample Whether or not to use sampling; use greedy decoding otherwise, by default False temperature The value used to modulate the next token probabilities, by default 1.0 topK The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50 topP Top cumulative probability for vocabulary tokens, by default 1.0 If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. repetitionPenalty The parameter for repetition penalty, 1.0 means no penalty. , by default 1.0 noRepeatNgramSize If set to int > 0, all ngrams of that size can only occur once, by default 0 ignoreTokenIds A list of token ids which are ignored in the decoder's output, by default [] Notes ----- This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended. References ---------- - `StarCoder2: The Versatile Code Companion. <https://huggingface.co/blog/starcoder>`__ - https://github.com/bigcode-project/starcoder **Paper Abstract:** *The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4× larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks.* *We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2-15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder-33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the Software Heritage persistent Identifiers (SWHIDs) of the source code data.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("documents") >>> starcoder2 = StarCoder2Transformer.pretrained("starcoder2") \\ ... .setInputCols(["documents"]) \\ ... .setMaxOutputLength(50) \\ ... .setOutputCol("generation") >>> pipeline = Pipeline().setStages([documentAssembler, starcoder2]) >>> data = spark.createDataFrame([["def add(a, b):"]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("generation.result").show(truncate=False) +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |result | +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |[def add(a, b): return a + b] | +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ """ name = "StarCoderTransformer" inputAnnotatorTypes = [AnnotatorType.DOCUMENT] outputAnnotatorType = AnnotatorType.DOCUMENT configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt) minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt) maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt) doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean) temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat) topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt) topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", typeConverter=TypeConverters.toFloat) repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", typeConverter=TypeConverters.toFloat) noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt) ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt)
[docs] def setIgnoreTokenIds(self, value): """A list of token ids which are ignored in the decoder's output. Parameters ---------- value : List[int] The words to be filtered out """ return self._set(ignoreTokenIds=value)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setMinOutputLength(self, value): """Sets minimum length of the sequence to be generated. Parameters ---------- value : int Minimum length of the sequence to be generated """ return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value): """Sets maximum length of output text. Parameters ---------- value : int Maximum length of output text """ return self._set(maxOutputLength=value)
[docs] def setDoSample(self, value): """Sets whether or not to use sampling, use greedy decoding otherwise. Parameters ---------- value : bool Whether or not to use sampling; use greedy decoding otherwise """ return self._set(doSample=value)
[docs] def setTemperature(self, value): """Sets the value used to module the next token probabilities. Parameters ---------- value : float The value used to module the next token probabilities """ return self._set(temperature=value)
[docs] def setTopK(self, value): """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering. Parameters ---------- value : int Number of highest probability vocabulary tokens to keep """ return self._set(topK=value)
[docs] def setTopP(self, value): """Sets the top cumulative probability for vocabulary tokens. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. Parameters ---------- value : float Cumulative probability for vocabulary tokens """ return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value): """Sets the parameter for repetition penalty. 1.0 means no penalty. Parameters ---------- value : float The repetition penalty References ---------- See `Ctrl: A Conditional Transformer Language Model For Controllable Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value): """Sets size of n-grams that can only occur once. If set to int > 0, all ngrams of that size can only occur once. Parameters ---------- value : int N-gram size can only occur once """ return self._set(noRepeatNgramSize=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.StarCoderTransformer", java_model=None): super(StarCoderTransformer, self).__init__(classname=classname, java_model=java_model) self._setDefault(minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=50, topP=0.9, repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1) @staticmethod
[docs] def loadSavedModel(folder, spark_session, use_openvino=False): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- StarCoderTransformer The restored model """ from sparknlp.internal import _StarCoderLoader jModel = _StarCoderLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj return StarCoderTransformer(java_model=jModel)
@staticmethod
[docs] def pretrained(name="starcoder", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "starcoder" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- StarCoderTransformer The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(StarCoderTransformer, name, lang, remote_loc)