Source code for sparknlp.annotator.seq2seq.t5_transformer

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for the T5Transformer."""

from sparknlp.common import *


[docs]class T5Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): """T5: the Text-To-Text Transfer Transformer T5 reconsiders all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. The text-to-text framework is able to use the same model, loss function, and hyper-parameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). T5 can even apply to regression tasks by training it to predict the string representation of a number instead of the number itself. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> t5 = T5Transformer.pretrained() \\ ... .setTask("summarize:") \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("summaries") The default model is ``"t5_small"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?q=t5>`__. For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/question-answering/Question_Answering_and_Summarization_with_T5.ipynb>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT`` ``DOCUMENT`` ====================== ====================== Parameters ---------- configProtoBytes ConfigProto from tensorflow, serialized into byte array. task Transformer's task, e.g. ``summarize:`` minOutputLength Minimum length of the sequence to be generated maxOutputLength Maximum length of output text doSample Whether or not to use sampling; use greedy decoding otherwise temperature The value used to module the next token probabilities topK The number of highest probability vocabulary tokens to keep for top-k-filtering topP Top cumulative probability for vocabulary tokens If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. repetitionPenalty The parameter for repetition penalty. 1.0 means no penalty. noRepeatNgramSize If set to int > 0, all ngrams of that size can only occur once ignoreTokenIds A list of token ids which are ignored in the decoder's output Notes ----- This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended. References ---------- - `Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer <https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html>`__ - `Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ - https://github.com/google-research/text-to-text-transfer-transformer **Paper Abstract:** *Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new Colossal Clean Crawled Corpus, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("documents") >>> t5 = T5Transformer.pretrained("t5_small") \\ ... .setTask("summarize:") \\ ... .setInputCols(["documents"]) \\ ... .setMaxOutputLength(200) \\ ... .setOutputCol("summaries") >>> pipeline = Pipeline().setStages([documentAssembler, t5]) >>> data = spark.createDataFrame([[ ... "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a " + ... "downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness" + ... " of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this " + ... "paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework " + ... "that converts all text-based language problems into a text-to-text format. Our systematic study compares " + ... "pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens " + ... "of language understanding tasks. By combining the insights from our exploration with scale and our new " + ... "Colossal Clean Crawled Corpus, we achieve state-of-the-art results on many benchmarks covering " + ... "summarization, question answering, text classification, and more. To facilitate future work on transfer " + ... "learning for NLP, we release our data set, pre-trained models, and code." ... ]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("summaries.result").show(truncate=False) +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |result | +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |[transfer learning has emerged as a powerful technique in natural language processing (NLP) the effectiveness of transfer learning has given rise to a diversity of approaches, methodologies, and practice .]| --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ """ name = "T5Transformer" inputAnnotatorTypes = [AnnotatorType.DOCUMENT] outputAnnotatorType = AnnotatorType.DOCUMENT configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt) task = Param(Params._dummy(), "task", "Transformer's task, e.g. summarize>", typeConverter=TypeConverters.toString) minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt) maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt) doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean) temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat) topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt) topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", typeConverter=TypeConverters.toFloat) repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", typeConverter=TypeConverters.toFloat) noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt) ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt) useCache = Param(Params._dummy(), "useCache", "Cache internal state of the model to improve performance", typeConverter=TypeConverters.toBoolean) stopAtEos = Param( Params._dummy(), "stopAtEos", "Stop text generation when the end-of-sentence token is encountered.", typeConverter=TypeConverters.toBoolean ) maxNewTokens = Param( Params._dummy(), "maxNewTokens", "Maximum number of new tokens to be generated", typeConverter=TypeConverters.toInt )
[docs] def setIgnoreTokenIds(self, value): """A list of token ids which are ignored in the decoder's output. Parameters ---------- value : List[int] The words to be filtered out """ return self._set(ignoreTokenIds=value)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setTask(self, value): """Sets the transformer's task, e.g. ``summarize:``. Parameters ---------- value : str The transformer's task """ return self._set(task=value)
[docs] def setMinOutputLength(self, value): """Sets minimum length of the sequence to be generated. Parameters ---------- value : int Minimum length of the sequence to be generated """ return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value): """Sets maximum length of output text. Parameters ---------- value : int Maximum length of output text """ return self._set(maxOutputLength=value)
[docs] def setStopAtEos(self, b): """Stop text generation when the end-of-sentence token is encountered. Parameters ---------- b : bool whether to stop at end-of-sentence token or not """ return self._set(stopAtEos=b)
[docs] def setMaxNewTokens(self, value): """Sets the maximum number of new tokens to be generated Parameters ---------- value : int the maximum number of new tokens to be generated """ return self._set(maxNewTokens=value)
[docs] def setDoSample(self, value): """Sets whether or not to use sampling, use greedy decoding otherwise. Parameters ---------- value : bool Whether or not to use sampling; use greedy decoding otherwise """ return self._set(doSample=value)
[docs] def setTemperature(self, value): """Sets the value used to module the next token probabilities. Parameters ---------- value : float The value used to module the next token probabilities """ return self._set(temperature=value)
[docs] def setTopK(self, value): """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering. Parameters ---------- value : int Number of highest probability vocabulary tokens to keep """ return self._set(topK=value)
[docs] def setTopP(self, value): """Sets the top cumulative probability for vocabulary tokens. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. Parameters ---------- value : float Cumulative probability for vocabulary tokens """ return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value): """Sets the parameter for repetition penalty. 1.0 means no penalty. Parameters ---------- value : float The repetition penalty References ---------- See `Ctrl: A Conditional Transformer Language Model For Controllable Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value): """Sets size of n-grams that can only occur once. If set to int > 0, all ngrams of that size can only occur once. Parameters ---------- value : int N-gram size can only occur once """ return self._set(noRepeatNgramSize=value)
[docs] def setUseCache(self, value): """Cache internal state of the model to improve performance Parameters ---------- value : bool Whether or not to use cache """ return self._set(useCache=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.T5Transformer", java_model=None): super(T5Transformer, self).__init__( classname=classname, java_model=java_model ) self._setDefault( task="", minOutputLength=0, maxOutputLength=20, doSample=False, temperature=1.0, topK=50, topP=1.0, repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1, stopAtEos=True, maxNewTokens=512, useCache=False ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- T5Transformer The restored model """ from sparknlp.internal import _T5Loader jModel = _T5Loader(folder, spark_session._jsparkSession)._java_obj return T5Transformer(java_model=jModel)
@staticmethod
[docs] def pretrained(name="t5_small", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "t5_small" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- T5Transformer The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(T5Transformer, name, lang, remote_loc)