Source code for sparknlp.util
# Copyright 2017-2022 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains various utilities."""
import sparknlp.internal as _internal
import numpy as np
from pyspark.sql import Row
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, BinaryType
[docs]def get_config_path():
return _internal._ConfigLoaderGetter().apply()
[docs]class CoNLLGenerator:
@staticmethod
[docs] def exportConllFiles(*args):
num_args = len(args)
if num_args == 2:
_internal._CoNLLGeneratorExportFromDataFrame(*args).apply()
elif num_args == 3:
_internal._CoNLLGeneratorExportFromDataFrameAndField(*args).apply()
elif num_args == 4:
_internal._CoNLLGeneratorExportFromTargetAndPipeline(*args).apply()
else:
raise NotImplementedError(f"No exportConllFiles alternative takes {num_args} parameters")
[docs]class EmbeddingsDataFrameUtils:
"""
Utility for creating DataFrames compatible with multimodal embedding models (e.g., E5VEmbeddings) for text-only scenarios.
Provides:
- imageSchema: the expected schema for Spark image DataFrames
- emptyImageRow: a dummy image row for text-only embedding
"""
[docs] imageSchema = StructType([
StructField(
"image",
StructType([
StructField("origin", StringType(), True),
StructField("height", IntegerType(), True),
StructField("width", IntegerType(), True),
StructField("nChannels", IntegerType(), True),
StructField("mode", IntegerType(), True),
StructField("data", BinaryType(), True),
]),
)
])
[docs] emptyImageRow = Row(Row("", 0, 0, 0, 0, bytes()))