Source code for sparknlp.util

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains various utilities."""


import sparknlp.internal as _internal
import numpy as np
from pyspark.sql import Row
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, BinaryType


[docs]def get_config_path(): return _internal._ConfigLoaderGetter().apply()
[docs]class CoNLLGenerator: @staticmethod
[docs] def exportConllFiles(*args): num_args = len(args) if num_args == 2: _internal._CoNLLGeneratorExportFromDataFrame(*args).apply() elif num_args == 3: _internal._CoNLLGeneratorExportFromDataFrameAndField(*args).apply() elif num_args == 4: _internal._CoNLLGeneratorExportFromTargetAndPipeline(*args).apply() else: raise NotImplementedError(f"No exportConllFiles alternative takes {num_args} parameters")
[docs]class EmbeddingsDataFrameUtils: """ Utility for creating DataFrames compatible with multimodal embedding models (e.g., E5VEmbeddings) for text-only scenarios. Provides: - imageSchema: the expected schema for Spark image DataFrames - emptyImageRow: a dummy image row for text-only embedding """
[docs] imageSchema = StructType([ StructField( "image", StructType([ StructField("origin", StringType(), True), StructField("height", IntegerType(), True), StructField("width", IntegerType(), True), StructField("nChannels", IntegerType(), True), StructField("mode", IntegerType(), True), StructField("data", BinaryType(), True), ]), ) ])
[docs] emptyImageRow = Row(Row("", 0, 0, 0, 0, bytes()))