sparknlp.annotator.classifier_dl.tapas_for_question_answering
#
Module Contents#
Classes#
TapasForQuestionAnswering is an implementation of TaPas - a BERT-based model specifically designed for |
- class TapasForQuestionAnswering(classname='com.johnsnowlabs.nlp.annotators.classifier.dl.TapasForQuestionAnswering', java_model=None)[source]#
TapasForQuestionAnswering is an implementation of TaPas - a BERT-based model specifically designed for answering questions about tabular data. It takes TABLE and DOCUMENT annotations as input and tries to answer the questions in the document by using the data from the table. The model is based in BertForQuestionAnswering and shares all its parameters with it.
Pretrained models can be loaded with
pretrained()
of the companion object:>>> tapas = TapasForQuestionAnswering.pretrained() \ ... .setInputCols(["table", "document"]) \ ... .setOutputCol("answer")
The default model is
"table_qa_tapas_base_finetuned_wtq"
, if no name is provided.For available pretrained models please see the Models Hub.
Input Annotation types
Output Annotation type
DOCUMENT, TABLE
CHUNK
- Parameters:
- batchSize
Batch size. Large values allows faster processing but requires more memory, by default 2
- caseSensitive
Whether to ignore case in tokens for embeddings matching, by default False
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
- maxSentenceLength
Max sentence length to process, by default 512
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> >>> document_assembler = MultiDocumentAssembler()\ ... .setInputCols("table_json", "questions")\ ... .setOutputCols("document_table", "document_questions") >>> >>> sentence_detector = SentenceDetector()\ ... .setInputCols(["document_questions"])\ ... .setOutputCol("questions") >>> >>> table_assembler = TableAssembler()\ ... .setInputCols(["document_table"])\ ... .setOutputCol("table") >>> >>> tapas = TapasForQuestionAnswering\ ... .pretrained()\ ... .setInputCols(["questions", "table"])\ ... .setOutputCol("answers") >>> >>> pipeline = Pipeline(stages=[ ... document_assembler, ... sentence_detector, ... table_assembler, ... tapas]) >>> >>> json_data = """ ... { ... "header": ["name", "money", "age"], ... "rows": [ ... ["Donald Trump", "$100,000,000", "75"], ... ["Elon Musk", "$20,000,000,000,000", "55"] ... ] ... } ... """ >>> model = pipeline.fit(data) >>> model\ ... .transform(data)\ ... .selectExpr("explode(answers) AS answer")\ ... .select("answer.metadata.question", "answer.result")\ ... .show(truncate=False) +-----------------------+----------------------------------------+ |question |result | +-----------------------+----------------------------------------+ |Who earns 100,000,000? |Donald Trump | |Who has more money? |Elon Musk | |How much they all earn?|COUNT($100,000,000, $20,000,000,000,000)| |How old are they? |AVERAGE(75, 55) | +-----------------------+----------------------------------------+
- static loadSavedModel(folder, spark_session)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- TapasForQuestionAnswering
The restored model
- static pretrained(name='table_qa_tapas_base_finetuned_wtq', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “table_qa_tapas_base_finetuned_wtq”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- TapasForQuestionAnswering
The restored model