sparknlp.annotator.ner.ner_dl_graph_checker
#
Contains classes for NerDL.
Module Contents#
Classes#
Checks whether a suitable NerDL graph is available for the given training dataset, before any |
|
Resulting model from NerDLGraphChecker, that does not perform any transformations, as the |
- class NerDLGraphChecker[source]#
Checks whether a suitable NerDL graph is available for the given training dataset, before any computations/training is done. This annotator is useful for custom training cases, where specialized graphs are needed.
Important: This annotator should be used or positioned before any embedding or NerDLApproach annotators in the pipeline and will process the whole dataset to extract the required graph parameters.
This annotator requires a dataset with at least two columns: one with tokens and one with the labels. In addition, it requires the used embedding annotator in the pipeline to extract the suitable embedding dimension.
For extended examples of usage, see the`Examples <JohnSnowLabs/spark-nlp>`__ and the NerDLGraphCheckerTestSpec.
Input Annotation types
Output Annotation type
DOCUMENT, TOKEN
NONE
- Parameters:
- inputCols
Column names of input annotations
- labelColumn
Column name for data labels
- embeddingsDim
Dimensionality of embeddings
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline
This CoNLL dataset already includes a sentence, token and label column with their respective annotator types. If a custom dataset is used, these need to be defined with for example:
>>> conll = CoNLL() >>> trainingData = conll.readDataset(spark, "src/test/resources/conll2003/eng.train") >>> embeddings = BertEmbeddings \ ... .pretrained() \ ... .setInputCols(["sentence", "token"]) \ ... .setOutputCol("embeddings")
This annotatorr requires the data for NerDLApproach graphs: text, tokens, labels and the embedding model
>>> nerDLGraphChecker = NerDLGraphChecker() \ ... .setInputCols(["sentence", "token"]) \ ... .setLabelColumn("label") \ ... .setEmbeddingsModel(embeddings) >>> nerTagger = NerDLApproach() \ ... .setInputCols(["sentence", "token", "embeddings"]) \ ... .setLabelColumn("label") \ ... .setOutputCol("ner") \ ... .setMaxEpochs(1) \ ... .setRandomSeed(0) \ ... .setVerbose(0) >>> pipeline = Pipeline().setStages([nerDLGraphChecker, embeddings, nerTagger])
If we now fit the model with a graph missing, then an exception is raised.
>>> pipelineModel = pipeline.fit(trainingData)
- setInputCols(*value)[source]#
Sets column names of input annotations.
- Parameters:
- *valueList[str]
Input columns for the annotator
- setLabelColumn(value)[source]#
Sets name of column for data labels.
- Parameters:
- valuestr
Column for data labels
- setEmbeddingsDim(value: int)[source]#
Sets Dimensionality of embeddings
- Parameters:
- valueint
Dimensionality of embeddings
- class NerDLGraphCheckerModel(classname='com.johnsnowlabs.nlp.annotators.ner.dl.NerDLGraphCheckerModel', java_model=None)[source]#
Resulting model from NerDLGraphChecker, that does not perform any transformations, as the checks are done during the
fit
phase. It acts as the identity.This annotator should never be used directly.