class HubertForCTC extends Wav2Vec2ForCTC
Hubert Model with a language modeling head on top for Connectionist Temporal Classification (CTC). Hubert was proposed in HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
The annotator takes audio files and transcribes it as text. The audio needs to be provided pre-processed an array of floats.
Note that this annotator is currently not supported on Apple Silicon processors such as the M1/M2 (Apple Silicon). This is due to the processor not supporting instructions for XLA.
Pretrained models can be loaded with pretrained
of the companion object:
val speechToText = HubertForCTC.pretrained() .setInputCols("audio_assembler") .setOutputCol("text")
The default model is "asr_hubert_large_ls960"
, if no name is provided.
For available pretrained models please see the Models Hub.
To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see HubertForCTCTestSpec.
References:
HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units
Paper Abstract:
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotators._ import com.johnsnowlabs.nlp.annotators.audio.HubertForCTC import org.apache.spark.ml.Pipeline val audioAssembler: AudioAssembler = new AudioAssembler() .setInputCol("audio_content") .setOutputCol("audio_assembler") val speechToText: HubertForCTC = HubertForCTC .pretrained() .setInputCols("audio_assembler") .setOutputCol("text") val pipeline: Pipeline = new Pipeline().setStages(Array(audioAssembler, speechToText)) val bufferedSource = scala.io.Source.fromFile("src/test/resources/audio/csv/audio_floats.csv") val rawFloats = bufferedSource .getLines() .map(_.split(",").head.trim.toFloat) .toArray bufferedSource.close val processedAudioFloats = Seq(rawFloats).toDF("audio_content") val result = pipeline.fit(processedAudioFloats).transform(processedAudioFloats) result.select("text.result").show(truncate = false) +------------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------------+ |[MISTER QUILTER IS THE APOSTLE OF THE MIDLE CLASES AND WE ARE GLAD TO WELCOME HIS GOSPEL ]| +------------------------------------------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- HubertForCTC
- Wav2Vec2ForCTC
- HasEngine
- WriteTensorflowModel
- HasAudioFeatureProperties
- HasBatchedAnnotateAudio
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
batchAnnotate(batchedAnnotations: Seq[Array[AnnotationAudio]]): Seq[Seq[Annotation]]
Takes a document and annotations and produces new annotations of this annotator's annotation type
Takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- Wav2Vec2ForCTC → HasBatchedAnnotateAudio
-
def
batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotateAudio
-
val
batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotateAudio
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): HubertForCTC.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- Wav2Vec2ForCTC
-
def
copy(extra: ParamMap): Wav2Vec2ForCTC
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
doNormalize: BooleanParam
Whether or not to normalize the input with mean and standard deviation
Whether or not to normalize the input with mean and standard deviation
- Definition Classes
- HasAudioFeatureProperties
-
val
engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
featureSize: IntParam
- Definition Classes
- HasAudioFeatureProperties
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateAudio
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getConfigProtoBytes: Option[Array[Byte]]
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- Wav2Vec2ForCTC
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDoNormalize: Boolean
- Definition Classes
- HasAudioFeatureProperties
-
def
getEngine: String
- Definition Classes
- HasEngine
-
def
getFeatureSize: Int
- Definition Classes
- HasAudioFeatureProperties
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getModelIfNotSet: Wav2Vec2
- Definition Classes
- Wav2Vec2ForCTC
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getPaddingSide: String
- Definition Classes
- HasAudioFeatureProperties
-
def
getPaddingValue: Float
- Definition Classes
- HasAudioFeatureProperties
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getReturnAttentionMask: Boolean
- Definition Classes
- HasAudioFeatureProperties
-
def
getSamplingRate: Int
- Definition Classes
- HasAudioFeatureProperties
-
def
getSignatures: Option[Map[String, String]]
- Definition Classes
- Wav2Vec2ForCTC
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : AUDIO
Input annotator type : AUDIO
- Definition Classes
- Wav2Vec2ForCTC → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- HubertForCTC → Wav2Vec2ForCTC → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
- Wav2Vec2ForCTC → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
val
paddingSide: Param[String]
- Definition Classes
- HasAudioFeatureProperties
-
val
paddingValue: FloatParam
- Definition Classes
- HasAudioFeatureProperties
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[Wav2Vec2ForCTC]
- Definition Classes
- Model
-
val
returnAttentionMask: BooleanParam
- Definition Classes
- HasAudioFeatureProperties
-
val
samplingRate: IntParam
- Definition Classes
- HasAudioFeatureProperties
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): HubertForCTC.this.type
- Definition Classes
- Params
-
def
setBatchSize(size: Int): HubertForCTC.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateAudio
-
def
setConfigProtoBytes(bytes: Array[Int]): HubertForCTC.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- Wav2Vec2ForCTC
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): HubertForCTC.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): HubertForCTC.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDoNormalize(value: Boolean): HubertForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
-
def
setFeatureSize(value: Int): HubertForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
-
final
def
setInputCols(value: String*): HubertForCTC.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): HubertForCTC.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): HubertForCTC.this.type
- Definition Classes
- CanBeLazy
-
def
setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): HubertForCTC.this.type
- Definition Classes
- Wav2Vec2ForCTC
-
final
def
setOutputCol(value: String): HubertForCTC.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setPaddingSide(value: String): HubertForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
-
def
setPaddingValue(value: Float): HubertForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
-
def
setParent(parent: Estimator[Wav2Vec2ForCTC]): Wav2Vec2ForCTC
- Definition Classes
- Model
-
def
setReturnAttentionMask(value: Boolean): HubertForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
-
def
setSamplingRate(value: Int): HubertForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
-
def
setSignatures(value: Map[String, String]): HubertForCTC.this.type
- Definition Classes
- Wav2Vec2ForCTC
-
def
setVocabulary(value: Map[String, BigInt]): HubertForCTC.this.type
- Definition Classes
- Wav2Vec2ForCTC
-
val
signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
It contains TF model signatures for the laded saved model
- Definition Classes
- Wav2Vec2ForCTC
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- HubertForCTC → Wav2Vec2ForCTC → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
val
vocabulary: MapFeature[String, BigInt]
Vocabulary used to encode the words to ids
Vocabulary used to encode the words to ids
- Definition Classes
- Wav2Vec2ForCTC
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Inherited from Wav2Vec2ForCTC
Inherited from HasEngine
Inherited from WriteTensorflowModel
Inherited from HasAudioFeatureProperties
Inherited from HasBatchedAnnotateAudio[Wav2Vec2ForCTC]
Inherited from AnnotatorModel[Wav2Vec2ForCTC]
Inherited from CanBeLazy
Inherited from RawAnnotator[Wav2Vec2ForCTC]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[Wav2Vec2ForCTC]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types