class HubertForCTC extends Wav2Vec2ForCTC

Hubert Model with a language modeling head on top for Connectionist Temporal Classification (CTC). Hubert was proposed in HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.

The annotator takes audio files and transcribes it as text. The audio needs to be provided pre-processed an array of floats.

Note that this annotator is currently not supported on Apple Silicon processors such as the M1/M2 (Apple Silicon). This is due to the processor not supporting instructions for XLA.

Pretrained models can be loaded with pretrained of the companion object:

val speechToText = HubertForCTC.pretrained()
  .setInputCols("audio_assembler")
  .setOutputCol("text")

The default model is "asr_hubert_large_ls960", if no name is provided.

For available pretrained models please see the Models Hub.

To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see HubertForCTCTestSpec.

References:

HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units

Paper Abstract:

Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotators._
import com.johnsnowlabs.nlp.annotators.audio.HubertForCTC
import org.apache.spark.ml.Pipeline

val audioAssembler: AudioAssembler = new AudioAssembler()
  .setInputCol("audio_content")
  .setOutputCol("audio_assembler")

val speechToText: HubertForCTC = HubertForCTC
  .pretrained()
  .setInputCols("audio_assembler")
  .setOutputCol("text")

val pipeline: Pipeline = new Pipeline().setStages(Array(audioAssembler, speechToText))

val bufferedSource =
  scala.io.Source.fromFile("src/test/resources/audio/csv/audio_floats.csv")

val rawFloats = bufferedSource
  .getLines()
  .map(_.split(",").head.trim.toFloat)
  .toArray
bufferedSource.close

val processedAudioFloats = Seq(rawFloats).toDF("audio_content")

val result = pipeline.fit(processedAudioFloats).transform(processedAudioFloats)
result.select("text.result").show(truncate = false)
+------------------------------------------------------------------------------------------+
|result                                                                                    |
+------------------------------------------------------------------------------------------+
|[MISTER QUILTER IS THE APOSTLE OF THE MIDLE CLASES AND WE ARE GLAD TO WELCOME HIS GOSPEL ]|
+------------------------------------------------------------------------------------------+
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. HubertForCTC
  2. Wav2Vec2ForCTC
  3. HasEngine
  4. WriteTensorflowModel
  5. HasAudioFeatureProperties
  6. HasBatchedAnnotateAudio
  7. AnnotatorModel
  8. CanBeLazy
  9. RawAnnotator
  10. HasOutputAnnotationCol
  11. HasInputAnnotationCols
  12. HasOutputAnnotatorType
  13. ParamsAndFeaturesWritable
  14. HasFeatures
  15. DefaultParamsWritable
  16. MLWritable
  17. Model
  18. Transformer
  19. PipelineStage
  20. Logging
  21. Params
  22. Serializable
  23. Serializable
  24. Identifiable
  25. AnyRef
  26. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new HubertForCTC()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new HubertForCTC(uid: String)

    uid

    required uid for storing annotator to disk

Type Members

  1. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  12. def batchAnnotate(batchedAnnotations: Seq[Array[AnnotationAudio]]): Seq[Seq[Annotation]]

    Takes a document and annotations and produces new annotations of this annotator's annotation type

    Takes a document and annotations and produces new annotations of this annotator's annotation type

    batchedAnnotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    Wav2Vec2ForCTCHasBatchedAnnotateAudio
  13. def batchProcess(rows: Iterator[_]): Iterator[Row]
    Definition Classes
    HasBatchedAnnotateAudio
  14. val batchSize: IntParam

    Size of every batch (Default depends on model).

    Size of every batch (Default depends on model).

    Definition Classes
    HasBatchedAnnotateAudio
  15. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  16. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  17. final def clear(param: Param[_]): HubertForCTC.this.type
    Definition Classes
    Params
  18. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  19. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    Wav2Vec2ForCTC
  20. def copy(extra: ParamMap): Wav2Vec2ForCTC

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  21. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  22. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  23. val doNormalize: BooleanParam

    Whether or not to normalize the input with mean and standard deviation

    Whether or not to normalize the input with mean and standard deviation

    Definition Classes
    HasAudioFeatureProperties
  24. val engine: Param[String]

    This param is set internally once via loadSavedModel.

    This param is set internally once via loadSavedModel. That's why there is no setter

    Definition Classes
    HasEngine
  25. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  26. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  27. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  28. def explainParams(): String
    Definition Classes
    Params
  29. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  30. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  31. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  32. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  33. val featureSize: IntParam

    Definition Classes
    HasAudioFeatureProperties
  34. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  35. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  36. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  41. def getBatchSize: Int

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotateAudio
  42. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  43. def getConfigProtoBytes: Option[Array[Byte]]

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    Wav2Vec2ForCTC
  44. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  45. def getDoNormalize: Boolean

    Definition Classes
    HasAudioFeatureProperties
  46. def getEngine: String

    Definition Classes
    HasEngine
  47. def getFeatureSize: Int

    Definition Classes
    HasAudioFeatureProperties
  48. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  49. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  50. def getModelIfNotSet: Wav2Vec2

    Definition Classes
    Wav2Vec2ForCTC
  51. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  52. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  53. def getPaddingSide: String

    Definition Classes
    HasAudioFeatureProperties
  54. def getPaddingValue: Float

    Definition Classes
    HasAudioFeatureProperties
  55. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  56. def getReturnAttentionMask: Boolean

    Definition Classes
    HasAudioFeatureProperties
  57. def getSamplingRate: Int

    Definition Classes
    HasAudioFeatureProperties
  58. def getSignatures: Option[Map[String, String]]

    Definition Classes
    Wav2Vec2ForCTC
  59. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  60. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  61. def hasParent: Boolean
    Definition Classes
    Model
  62. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  63. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  64. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  65. val inputAnnotatorTypes: Array[AnnotatorType]

    Input annotator type : AUDIO

    Input annotator type : AUDIO

    Definition Classes
    Wav2Vec2ForCTCHasInputAnnotationCols
  66. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  67. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  68. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  69. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  70. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  71. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  72. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  73. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  80. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  82. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  83. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  84. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  85. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  86. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  87. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  88. def onWrite(path: String, spark: SparkSession): Unit
  89. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  90. val outputAnnotatorType: AnnotatorType

    Output annotator type : DOCUMENT

    Output annotator type : DOCUMENT

    Definition Classes
    Wav2Vec2ForCTCHasOutputAnnotatorType
  91. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  92. val paddingSide: Param[String]

    Definition Classes
    HasAudioFeatureProperties
  93. val paddingValue: FloatParam

    Definition Classes
    HasAudioFeatureProperties
  94. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  95. var parent: Estimator[Wav2Vec2ForCTC]
    Definition Classes
    Model
  96. val returnAttentionMask: BooleanParam

    Definition Classes
    HasAudioFeatureProperties
  97. val samplingRate: IntParam

    Definition Classes
    HasAudioFeatureProperties
  98. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  99. def set[T](feature: StructFeature[T], value: T): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  100. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  101. def set[T](feature: SetFeature[T], value: Set[T]): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  102. def set[T](feature: ArrayFeature[T], value: Array[T]): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  103. final def set(paramPair: ParamPair[_]): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    Params
  104. final def set(param: String, value: Any): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    Params
  105. final def set[T](param: Param[T], value: T): HubertForCTC.this.type
    Definition Classes
    Params
  106. def setBatchSize(size: Int): HubertForCTC.this.type

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotateAudio
  107. def setConfigProtoBytes(bytes: Array[Int]): HubertForCTC.this.type

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    Wav2Vec2ForCTC
  108. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  109. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  110. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  111. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  112. final def setDefault(paramPairs: ParamPair[_]*): HubertForCTC.this.type
    Attributes
    protected
    Definition Classes
    Params
  113. final def setDefault[T](param: Param[T], value: T): HubertForCTC.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  114. def setDoNormalize(value: Boolean): HubertForCTC.this.type

    Definition Classes
    HasAudioFeatureProperties
  115. def setFeatureSize(value: Int): HubertForCTC.this.type

    Definition Classes
    HasAudioFeatureProperties
  116. final def setInputCols(value: String*): HubertForCTC.this.type
    Definition Classes
    HasInputAnnotationCols
  117. def setInputCols(value: Array[String]): HubertForCTC.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  118. def setLazyAnnotator(value: Boolean): HubertForCTC.this.type
    Definition Classes
    CanBeLazy
  119. def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): HubertForCTC.this.type

    Definition Classes
    Wav2Vec2ForCTC
  120. final def setOutputCol(value: String): HubertForCTC.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  121. def setPaddingSide(value: String): HubertForCTC.this.type

    Definition Classes
    HasAudioFeatureProperties
  122. def setPaddingValue(value: Float): HubertForCTC.this.type

    Definition Classes
    HasAudioFeatureProperties
  123. def setParent(parent: Estimator[Wav2Vec2ForCTC]): Wav2Vec2ForCTC
    Definition Classes
    Model
  124. def setReturnAttentionMask(value: Boolean): HubertForCTC.this.type

    Definition Classes
    HasAudioFeatureProperties
  125. def setSamplingRate(value: Int): HubertForCTC.this.type

    Definition Classes
    HasAudioFeatureProperties
  126. def setSignatures(value: Map[String, String]): HubertForCTC.this.type

    Definition Classes
    Wav2Vec2ForCTC
  127. def setVocabulary(value: Map[String, BigInt]): HubertForCTC.this.type

    Definition Classes
    Wav2Vec2ForCTC
  128. val signatures: MapFeature[String, String]

    It contains TF model signatures for the laded saved model

    It contains TF model signatures for the laded saved model

    Definition Classes
    Wav2Vec2ForCTC
  129. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  130. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  131. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  132. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  133. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  134. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  135. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  136. val uid: String
    Definition Classes
    HubertForCTCWav2Vec2ForCTC → Identifiable
  137. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  138. val vocabulary: MapFeature[String, BigInt]

    Vocabulary used to encode the words to ids

    Vocabulary used to encode the words to ids

    Definition Classes
    Wav2Vec2ForCTC
  139. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  140. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  141. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  142. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  143. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  144. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
    Definition Classes
    WriteTensorflowModel
  145. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel
  146. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from Wav2Vec2ForCTC

Inherited from HasEngine

Inherited from WriteTensorflowModel

Inherited from HasAudioFeatureProperties

Inherited from AnnotatorModel[Wav2Vec2ForCTC]

Inherited from CanBeLazy

Inherited from RawAnnotator[Wav2Vec2ForCTC]

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[Wav2Vec2ForCTC]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters