class LanguageDetectorDL extends AnnotatorModel[LanguageDetectorDL] with HasSimpleAnnotate[LanguageDetectorDL] with WriteTensorflowModel with HasEngine
Language Identification and Detection by using CNN and RNN architectures in TensorFlow.
LanguageDetectorDL
is an annotator that detects the language of documents or sentences
depending on the inputCols. The models are trained on large datasets such as Wikipedia and
Tatoeba. Depending on the language (how similar the characters are), the LanguageDetectorDL
works best with text longer than 140 characters. The output is a language code in
Wiki Code style.
Pretrained models can be loaded with pretrained
of the companion object:
Val languageDetector = LanguageDetectorDL.pretrained() .setInputCols("sentence") .setOutputCol("language")
The default model is "ld_wiki_tatoeba_cnn_21"
, default language is "xx"
(meaning
multi-lingual), if no values are provided. For available pretrained models please see the
Models Hub.
For extended examples of usage, see the Examples And the LanguageDetectorDLTestSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.ld.dl.LanguageDetectorDL import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val languageDetector = LanguageDetectorDL.pretrained() .setInputCols("document") .setOutputCol("language") val pipeline = new Pipeline() .setStages(Array( documentAssembler, languageDetector )) val data = Seq( "Spark NLP is an open-source text processing library for advanced natural language processing for the Python, Java and Scala programming languages.", "Spark NLP est une bibliothèque de traitement de texte open source pour le traitement avancé du langage naturel pour les langages de programmation Python, Java et Scala.", "Spark NLP ist eine Open-Source-Textverarbeitungsbibliothek für fortgeschrittene natürliche Sprachverarbeitung für die Programmiersprachen Python, Java und Scala." ).toDF("text") val result = pipeline.fit(data).transform(data) result.select("language.result").show(false) +------+ |result| +------+ |[en] | |[fr] | |[de] | +------+
- Grouped
- Alphabetic
- By Inheritance
- LanguageDetectorDL
- HasEngine
- WriteTensorflowModel
- HasSimpleAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
-
val
alphabet: MapFeature[String, Int]
Alphabet used to feed the TensorFlow model for prediction
-
val
coalesceSentences: BooleanParam
Output average of sentences instead of one output per sentence (Default:
true
). -
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
val
engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
-
val
language: MapFeature[String, Int]
Language used to map prediction to ISO 639-1 language codes
-
val
languages: StringArrayParam
Languages the model was trained with.
-
val
threshold: FloatParam
The minimum threshold for the final result, otherwise it will be either
"unk"
or the value set inthresholdLabel
(Default:0.1f
).The minimum threshold for the final result, otherwise it will be either
"unk"
or the value set inthresholdLabel
(Default:0.1f
). Value is between 0.0 to 1.0. Try to set this lower if your text is hard to predict -
val
thresholdLabel: Param[String]
Value for the classification, if confidence is less than
threshold
(Default:"unk"
).
Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
-
def
annotate(annotations: Seq[Annotation]): Seq[Annotation]
Takes a document and annotations and produces new annotations of this annotator's annotation type
Takes a document and annotations and produces new annotations of this annotator's annotation type
- annotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- LanguageDetectorDL → HasSimpleAnnotate
-
final
def
clear(param: Param[_]): LanguageDetectorDL.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): LanguageDetectorDL
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
dfAnnotate: UserDefinedFunction
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
- returns
udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation
- Definition Classes
- HasSimpleAnnotate
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
val
inputAnnotatorTypes: Array[String]
Annotator reference id.
Annotator reference id. Used to identify elements in metadata or to refer to this annotator type
- Definition Classes
- LanguageDetectorDL → HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- LanguageDetectorDL → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
- Definition Classes
- LanguageDetectorDL → HasOutputAnnotatorType
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[LanguageDetectorDL]
- Definition Classes
- Model
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): LanguageDetectorDL.this.type
- Definition Classes
- Params
-
final
def
setInputCols(value: String*): LanguageDetectorDL.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): LanguageDetectorDL.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): LanguageDetectorDL.this.type
- Definition Classes
- CanBeLazy
-
final
def
setOutputCol(value: String): LanguageDetectorDL.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[LanguageDetectorDL]): LanguageDetectorDL
- Definition Classes
- Model
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
val
uid: String
- Definition Classes
- LanguageDetectorDL → Identifiable
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Parameter setters
- def setAlphabet(value: Map[String, Int]): LanguageDetectorDL.this.type
- def setCoalesceSentences(value: Boolean): LanguageDetectorDL.this.type
- def setConfigProtoBytes(bytes: Array[Int]): LanguageDetectorDL.this.type
- def setLanguage(value: Map[String, Int]): LanguageDetectorDL.this.type
- def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): LanguageDetectorDL.this.type
- def setThreshold(threshold: Float): LanguageDetectorDL.this.type
- def setThresholdLabel(label: String): LanguageDetectorDL.this.type