com.johnsnowlabs.nlp.annotators.similarity
DocumentSimilarityRankerApproach
Companion object DocumentSimilarityRankerApproach
class DocumentSimilarityRankerApproach extends AnnotatorApproach[DocumentSimilarityRankerModel] with HasEnableCachingProperties
Annotator that uses LSH techniques present in Spark ML lib to execute approximate nearest neighbors search on top of sentence embeddings.
It aims to capture the semantic meaning of a document in a dense, continuous vector space and return it to the ranker search.
For instantiated/pretrained models, see DocumentSimilarityRankerModel.
For extended examples of usage, see the jupyter notebook Document Similarity Ranker for Spark NLP.
Example
import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import com.johnsnowlabs.nlp.annotators.similarity.DocumentSimilarityRankerApproach import com.johnsnowlabs.nlp.finisher.DocumentSimilarityRankerFinisher import org.apache.spark.ml.Pipeline import spark.implicits._ val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentenceEmbeddings = RoBertaSentenceEmbeddings .pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val documentSimilarityRanker = new DocumentSimilarityRankerApproach() .setInputCols("sentence_embeddings") .setOutputCol("doc_similarity_rankings") .setSimilarityMethod("brp") .setNumberOfNeighbours(1) .setBucketLength(2.0) .setNumHashTables(3) .setVisibleDistances(true) .setIdentityRanking(false) val documentSimilarityRankerFinisher = new DocumentSimilarityRankerFinisher() .setInputCols("doc_similarity_rankings") .setOutputCols( "finished_doc_similarity_rankings_id", "finished_doc_similarity_rankings_neighbors") .setExtractNearestNeighbor(true) // Let's use a dataset where we can visually control similarity // Documents are coupled, as 1-2, 3-4, 5-6, 7-8 and they were create to be similar on purpose val data = Seq( "First document, this is my first sentence. This is my second sentence.", "Second document, this is my second sentence. This is my second sentence.", "Third document, climate change is arguably one of the most pressing problems of our time.", "Fourth document, climate change is definitely one of the most pressing problems of our time.", "Fifth document, Florence in Italy, is among the most beautiful cities in Europe.", "Sixth document, Florence in Italy, is a very beautiful city in Europe like Lyon in France.", "Seventh document, the French Riviera is the Mediterranean coastline of the southeast corner of France.", "Eighth document, the warmest place in France is the French Riviera coast in Southern France.") .toDF("text") val pipeline = new Pipeline().setStages( Array( documentAssembler, sentenceEmbeddings, documentSimilarityRanker, documentSimilarityRankerFinisher)) val result = pipeline.fit(data).transform(data) result .select("finished_doc_similarity_rankings_id", "finished_doc_similarity_rankings_neighbors") .show(10, truncate = false) +-----------------------------------+------------------------------------------+ |finished_doc_similarity_rankings_id|finished_doc_similarity_rankings_neighbors| +-----------------------------------+------------------------------------------+ |1510101612 |[(1634839239,0.12448559591306324)] | |1634839239 |[(1510101612,0.12448559591306324)] | |-612640902 |[(1274183715,0.1220122862046063)] | |1274183715 |[(-612640902,0.1220122862046063)] | |-1320876223 |[(1293373212,0.17848855164122393)] | |1293373212 |[(-1320876223,0.17848855164122393)] | |-1548374770 |[(-1719102856,0.23297156732534166)] | |-1719102856 |[(-1548374770,0.23297156732534166)] | +-----------------------------------+------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- DocumentSimilarityRankerApproach
- HasEnableCachingProperties
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val DISTANCE: String
- val INDEX_COL_NAME: String
- val LSH_INPUT_COL_NAME: String
- val LSH_OUTPUT_COL_NAME: String
- val TEXT: String
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): DocumentSimilarityRankerModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
aggregationMethod: Param[String]
Specifies the method used to aggregate multiple sentence embeddings into a single vector representation.
Specifies the method used to aggregate multiple sentence embeddings into a single vector representation. Options include 'AVERAGE' (compute the mean of all embeddings), 'FIRST' (use the first embedding only), 'MAX' (compute the element-wise maximum across embeddings)
Default AVERAGE
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- def asRetriever(value: String): DocumentSimilarityRankerApproach.this.type
- val asRetrieverQuery: Param[String]
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- val bucketLength: Param[Double]
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): DocumentSimilarityRankerApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[DocumentSimilarityRankerModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: AnnotatorType
- Definition Classes
- DocumentSimilarityRankerApproach → AnnotatorApproach
-
val
enableCaching: BooleanParam
Whether to enable caching DataFrames or RDDs during the training
Whether to enable caching DataFrames or RDDs during the training
- Definition Classes
- HasEnableCachingProperties
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): DocumentSimilarityRankerModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[DocumentSimilarityRankerModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): DocumentSimilarityRankerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DocumentSimilarityRankerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getAggregationMethod: String
- def getAsRetrieverQuery: String
- def getBucketLength: Double
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEnableCaching: Boolean
- Definition Classes
- HasEnableCachingProperties
- def getIdentityRanking: Boolean
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getNeighborsResultSet(query: (Int, Vector), similarityDataset: DataFrame): NeighborsResultSet
- def getNumberOfNeighbours: Int
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getSimilarityMethod: String
- def getVisibleDistances: Boolean
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- val identityRanking: BooleanParam
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Annotator reference id.
Annotator reference id. Used to identify elements in metadata or to refer to this annotator type
- Definition Classes
- DocumentSimilarityRankerApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- val numHashTables: Param[Int]
-
val
numberOfNeighbours: Param[Int]
The number of neighbours the model will return (Default:
"10"
). -
def
onTrained(model: DocumentSimilarityRankerModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
- Definition Classes
- DocumentSimilarityRankerApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): DocumentSimilarityRankerApproach.this.type
- Definition Classes
- Params
-
def
setAggregationMethod(strategy: String): DocumentSimilarityRankerApproach.this.type
Set the method used to aggregate multiple sentence embeddings into a single vector representation.
Set the method used to aggregate multiple sentence embeddings into a single vector representation. Options include 'AVERAGE' (compute the mean of all embeddings), 'FIRST' (use the first embedding only), 'MAX' (compute the element-wise maximum across embeddings)
Default AVERAGE
- def setBucketLength(value: Double): DocumentSimilarityRankerApproach.this.type
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): DocumentSimilarityRankerApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setEnableCaching(value: Boolean): DocumentSimilarityRankerApproach.this.type
- Definition Classes
- HasEnableCachingProperties
- def setIdentityRanking(value: Boolean): DocumentSimilarityRankerApproach.this.type
-
final
def
setInputCols(value: String*): DocumentSimilarityRankerApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): DocumentSimilarityRankerApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): DocumentSimilarityRankerApproach.this.type
- Definition Classes
- CanBeLazy
- def setNumHashTables(value: Int): DocumentSimilarityRankerApproach.this.type
- def setNumberOfNeighbours(value: Int): DocumentSimilarityRankerApproach.this.type
-
final
def
setOutputCol(value: String): DocumentSimilarityRankerApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setSimilarityMethod(value: String): DocumentSimilarityRankerApproach.this.type
- def setVisibleDistances(value: Boolean): DocumentSimilarityRankerApproach.this.type
-
val
similarityMethod: Param[String]
The similarity method used to calculate the neighbours.
The similarity method used to calculate the neighbours. (Default:
"brp"
, Bucketed Random Projection for Euclidean Distance) -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(embeddingsDataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DocumentSimilarityRankerModel
- Definition Classes
- DocumentSimilarityRankerApproach → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- DocumentSimilarityRankerApproach → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- val visibleDistances: BooleanParam
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from HasEnableCachingProperties
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[DocumentSimilarityRankerModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[DocumentSimilarityRankerModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.