Source code for sparknlp.annotator.classifier_dl.sentiment_dl

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for SentimentDL."""

from sparknlp.annotator.param import EvaluationDLParams, ClassifierEncoder
from sparknlp.common import *


[docs]class SentimentDLApproach(AnnotatorApproach, EvaluationDLParams, ClassifierEncoder): """Trains a SentimentDL, an annotator for multi-class sentiment analysis. In natural language processing, sentiment analysis is the task of classifying the affective state or subjective view of a text. A common example is if either a product review or tweet can be interpreted positively or negatively. For the instantiated/pretrained models, see :class:`.SentimentDLModel`. Setting a test dataset to monitor model metrics can be done with ``.setTestDataset``. The method expects a path to a parquet file containing a dataframe that has the same required columns as the training dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe. The following example will show how to create the test dataset: >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> embeddings = UniversalSentenceEncoder.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("sentence_embeddings") >>> preProcessingPipeline = Pipeline().setStages([documentAssembler, embeddings]) >>> (train, test) = data.randomSplit([0.8, 0.2]) >>> preProcessingPipeline \\ ... .fit(test) \\ ... .transform(test) ... .write \\ ... .mode("overwrite") \\ ... .parquet("test_data") >>> classifier = SentimentDLApproach() \\ ... .setInputCols(["sentence_embeddings"]) \\ ... .setOutputCol("sentiment") \\ ... .setLabelColumn("label") \\ ... .setTestDataset("test_data") For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/SentimentDL_train_multiclass_sentiment_classifier.ipynb>`__. ======================= ====================== Input Annotation types Output Annotation type ======================= ====================== ``SENTENCE_EMBEDDINGS`` ``CATEGORY`` ======================= ====================== Parameters ---------- batchSize Batch size, by default 64 configProtoBytes ConfigProto from tensorflow, serialized into byte array. dropout Dropout coefficient, by default 0.5 enableOutputLogs Whether to use stdout in addition to Spark logs, by default False evaluationLogExtended Whether logs for validation to be extended: it displays time and evaluation of each label. Default is False. labelColumn Column with label per each token lr Learning Rate, by default 0.005 maxEpochs Maximum number of epochs to train, by default 30 outputLogsPath Folder path to save training logs randomSeed Random seed testDataset Path to test dataset. If set used to calculate statistic on it during training. threshold The minimum threshold for the final result otheriwse it will be neutral, by default 0.6 thresholdLabel In case the score is less than threshold, what should be the label, by default "neutral" validationSplit Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off. verbose Level of verbosity during training Notes ----- - This annotator accepts a label column of a single item in either type of String, Int, Float, or Double. So positive sentiment can be expressed as either ``"positive"`` or ``0``, negative sentiment as ``"negative"`` or ``1``. - UniversalSentenceEncoder, BertSentenceEmbeddings, or SentenceEmbeddings can be used for the ``inputCol``. Examples -------- In this example, ``sentiment.csv`` is in the form:: text,label This movie is the best movie I have watched ever! In my opinion this movie can win an award.,0 This was a terrible movie! The acting was bad really bad!,1 The model can then be trained with >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> smallCorpus = spark.read.option("header", "True").csv("src/test/resources/classifier/sentiment.csv") >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> useEmbeddings = UniversalSentenceEncoder.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("sentence_embeddings") >>> docClassifier = SentimentDLApproach() \\ ... .setInputCols(["sentence_embeddings"]) \\ ... .setOutputCol("sentiment") \\ ... .setLabelColumn("label") \\ ... .setBatchSize(32) \\ ... .setMaxEpochs(1) \\ ... .setLr(5e-3) \\ ... .setDropout(0.5) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... useEmbeddings, ... docClassifier ... ]) >>> pipelineModel = pipeline.fit(smallCorpus) """ inputAnnotatorTypes = [AnnotatorType.SENTENCE_EMBEDDINGS] outputAnnotatorType = AnnotatorType.CATEGORY dropout = Param(Params._dummy(), "dropout", "Dropout coefficient", TypeConverters.toFloat) threshold = Param(Params._dummy(), "threshold", "The minimum threshold for the final result otheriwse it will be neutral", TypeConverters.toFloat) thresholdLabel = Param(Params._dummy(), "thresholdLabel", "In case the score is less than threshold, what should be the label. Default is neutral.", TypeConverters.toString)
[docs] def setDropout(self, v): """Sets dropout coefficient, by default 0.5. Parameters ---------- v : float Dropout coefficient """ self._set(dropout=v) return self
[docs] def setThreshold(self, v): """Sets the minimum threshold for the final result otheriwse it will be neutral, by default 0.6. Parameters ---------- v : float Minimum threshold for the final result """ self._set(threshold=v) return self
[docs] def setThresholdLabel(self, p): """Sets what the label should be, if the score is less than threshold, by default "neutral". Parameters ---------- p : str The label, if the score is less than threshold """ return self._set(thresholdLabel=p)
def _create_model(self, java_model): return SentimentDLModel(java_model=java_model) @keyword_only def __init__(self): super(SentimentDLApproach, self).__init__( classname="com.johnsnowlabs.nlp.annotators.classifier.dl.SentimentDLApproach") self._setDefault( maxEpochs=30, lr=float(0.005), batchSize=64, dropout=float(0.5), enableOutputLogs=False, evaluationLogExtended=False, threshold=0.6, thresholdLabel="neutral"
)
[docs]class SentimentDLModel(AnnotatorModel, HasStorageRef, HasEngine): """SentimentDL, an annotator for multi-class sentiment analysis. In natural language processing, sentiment analysis is the task of classifying the affective state or subjective view of a text. A common example is if either a product review or tweet can be interpreted positively or negatively. This is the instantiated model of the :class:`.SentimentDLApproach`. For training your own model, please see the documentation of that class. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> sentiment = SentimentDLModel.pretrained() \\ ... .setInputCols(["sentence_embeddings"]) \\ ... .setOutputCol("sentiment") The default model is ``"sentimentdl_use_imdb"``, if no name is provided. It is english sentiment analysis trained on the IMDB dataset. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Sentiment+Analysis>`__. For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/SentimentDL_train_multiclass_sentiment_classifier.ipynb>`__. ======================= ====================== Input Annotation types Output Annotation type ======================= ====================== ``SENTENCE_EMBEDDINGS`` ``CATEGORY`` ======================= ====================== Parameters ---------- configProtoBytes ConfigProto from tensorflow, serialized into byte array. threshold The minimum threshold for the final result otheriwse it will be neutral, by default 0.6 thresholdLabel In case the score is less than threshold, what should be the label. Default is neutral, by default "neutral" classes Tags used to trained this SentimentDLModel Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> useEmbeddings = UniversalSentenceEncoder.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("sentence_embeddings") >>> sentiment = SentimentDLModel.pretrained("sentimentdl_use_twitter") \\ ... .setInputCols(["sentence_embeddings"]) \\ ... .setThreshold(0.7) \\ ... .setOutputCol("sentiment") >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... useEmbeddings, ... sentiment ... ]) >>> data = spark.createDataFrame([ ... ["Wow, the new video is awesome!"], ... ["bruh what a damn waste of time"] ... ]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("text", "sentiment.result").show(truncate=False) +------------------------------+----------+ |text |result | +------------------------------+----------+ |Wow, the new video is awesome!|[positive]| |bruh what a damn waste of time|[negative]| +------------------------------+----------+ """ name = "SentimentDLModel" inputAnnotatorTypes = [AnnotatorType.SENTENCE_EMBEDDINGS] outputAnnotatorType = AnnotatorType.CATEGORY def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.SentimentDLModel", java_model=None): super(SentimentDLModel, self).__init__( classname=classname, java_model=java_model ) self._setDefault( threshold=0.6, thresholdLabel="neutral" ) configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt) threshold = Param(Params._dummy(), "threshold", "The minimum threshold for the final result otheriwse it will be neutral", TypeConverters.toFloat) thresholdLabel = Param(Params._dummy(), "thresholdLabel", "In case the score is less than threshold, what should be the label. Default is neutral.", TypeConverters.toString) classes = Param(Params._dummy(), "classes", "get the tags used to trained this SentimentDLModel", TypeConverters.toListString)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setThreshold(self, v): """Sets the minimum threshold for the final result otheriwse it will be neutral, by default 0.6. Parameters ---------- v : float Minimum threshold for the final result """ self._set(threshold=v) return self
[docs] def setThresholdLabel(self, p): """Sets what the label should be, if the score is less than threshold, by default "neutral". Parameters ---------- p : str The label, if the score is less than threshold """ return self._set(thresholdLabel=p)
@staticmethod
[docs] def pretrained(name="sentimentdl_use_imdb", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "sentimentdl_use_imdb" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- SentimentDLModel The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(SentimentDLModel, name, lang, remote_loc)