sparknlp.annotator.classifier_dl.sentiment_dl
#
Contains classes for SentimentDL.
Module Contents#
Classes#
Trains a SentimentDL, an annotator for multi-class sentiment analysis. |
|
SentimentDL, an annotator for multi-class sentiment analysis. |
- class SentimentDLApproach[source]#
Trains a SentimentDL, an annotator for multi-class sentiment analysis.
In natural language processing, sentiment analysis is the task of classifying the affective state or subjective view of a text. A common example is if either a product review or tweet can be interpreted positively or negatively.
For the instantiated/pretrained models, see
SentimentDLModel
.Setting a test dataset to monitor model metrics can be done with
.setTestDataset
. The method expects a path to a parquet file containing a dataframe that has the same required columns as the training dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe. The following example will show how to create the test dataset:>>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> embeddings = UniversalSentenceEncoder.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence_embeddings") >>> preProcessingPipeline = Pipeline().setStages([documentAssembler, embeddings]) >>> (train, test) = data.randomSplit([0.8, 0.2]) >>> preProcessingPipeline \ ... .fit(test) \ ... .transform(test) ... .write \ ... .mode("overwrite") \ ... .parquet("test_data") >>> classifier = SentimentDLApproach() \ ... .setInputCols(["sentence_embeddings"]) \ ... .setOutputCol("sentiment") \ ... .setLabelColumn("label") \ ... .setTestDataset("test_data")
For extended examples of usage, see the Examples.
Input Annotation types
Output Annotation type
SENTENCE_EMBEDDINGS
CATEGORY
- Parameters:
- batchSize
Batch size, by default 64
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
- dropout
Dropout coefficient, by default 0.5
- enableOutputLogs
Whether to use stdout in addition to Spark logs, by default False
- evaluationLogExtended
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is False.
- labelColumn
Column with label per each token
- lr
Learning Rate, by default 0.005
- maxEpochs
Maximum number of epochs to train, by default 30
- outputLogsPath
Folder path to save training logs
- randomSeed
Random seed
- testDataset
Path to test dataset. If set used to calculate statistic on it during training.
- threshold
The minimum threshold for the final result otheriwse it will be neutral, by default 0.6
- thresholdLabel
In case the score is less than threshold, what should be the label, by default “neutral”
- validationSplit
Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.
- verbose
Level of verbosity during training
Notes
This annotator accepts a label column of a single item in either type of String, Int, Float, or Double. So positive sentiment can be expressed as either
"positive"
or0
, negative sentiment as"negative"
or1
.UniversalSentenceEncoder, BertSentenceEmbeddings, or SentenceEmbeddings can be used for the
inputCol
.
Examples
In this example,
sentiment.csv
is in the form:text,label This movie is the best movie I have watched ever! In my opinion this movie can win an award.,0 This was a terrible movie! The acting was bad really bad!,1
The model can then be trained with
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> smallCorpus = spark.read.option("header", "True").csv("src/test/resources/classifier/sentiment.csv") >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> useEmbeddings = UniversalSentenceEncoder.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence_embeddings") >>> docClassifier = SentimentDLApproach() \ ... .setInputCols(["sentence_embeddings"]) \ ... .setOutputCol("sentiment") \ ... .setLabelColumn("label") \ ... .setBatchSize(32) \ ... .setMaxEpochs(1) \ ... .setLr(5e-3) \ ... .setDropout(0.5) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... useEmbeddings, ... docClassifier ... ]) >>> pipelineModel = pipeline.fit(smallCorpus)
- setDropout(v)[source]#
Sets dropout coefficient, by default 0.5.
- Parameters:
- vfloat
Dropout coefficient
- class SentimentDLModel(classname='com.johnsnowlabs.nlp.annotators.classifier.dl.SentimentDLModel', java_model=None)[source]#
SentimentDL, an annotator for multi-class sentiment analysis.
In natural language processing, sentiment analysis is the task of classifying the affective state or subjective view of a text. A common example is if either a product review or tweet can be interpreted positively or negatively.
This is the instantiated model of the
SentimentDLApproach
. For training your own model, please see the documentation of that class.Pretrained models can be loaded with
pretrained()
of the companion object:>>> sentiment = SentimentDLModel.pretrained() \ ... .setInputCols(["sentence_embeddings"]) \ ... .setOutputCol("sentiment")
The default model is
"sentimentdl_use_imdb"
, if no name is provided. It is english sentiment analysis trained on the IMDB dataset. For available pretrained models please see the Models Hub.For extended examples of usage, see the Examples.
Input Annotation types
Output Annotation type
SENTENCE_EMBEDDINGS
CATEGORY
- Parameters:
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
- threshold
The minimum threshold for the final result otheriwse it will be neutral, by default 0.6
- thresholdLabel
In case the score is less than threshold, what should be the label. Default is neutral, by default “neutral”
- classes
Tags used to trained this SentimentDLModel
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> useEmbeddings = UniversalSentenceEncoder.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence_embeddings") >>> sentiment = SentimentDLModel.pretrained("sentimentdl_use_twitter") \ ... .setInputCols(["sentence_embeddings"]) \ ... .setThreshold(0.7) \ ... .setOutputCol("sentiment") >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... useEmbeddings, ... sentiment ... ]) >>> data = spark.createDataFrame([ ... ["Wow, the new video is awesome!"], ... ["bruh what a damn waste of time"] ... ]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("text", "sentiment.result").show(truncate=False) +------------------------------+----------+ |text |result | +------------------------------+----------+ |Wow, the new video is awesome!|[positive]| |bruh what a damn waste of time|[negative]| +------------------------------+----------+
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
- bList[int]
ConfigProto from tensorflow, serialized into byte array
- setThreshold(v)[source]#
Sets the minimum threshold for the final result otheriwse it will be neutral, by default 0.6.
- Parameters:
- vfloat
Minimum threshold for the final result
- setThresholdLabel(p)[source]#
Sets what the label should be, if the score is less than threshold, by default “neutral”.
- Parameters:
- pstr
The label, if the score is less than threshold
- static pretrained(name='sentimentdl_use_imdb', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “sentimentdl_use_imdb”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- SentimentDLModel
The restored model