Source code for sparknlp.annotator.cv.blip_for_question_answering

#  Copyright 2017-2024 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from sparknlp.common import *

[docs]class BLIPForQuestionAnswering(AnnotatorModel, HasBatchedAnnotateImage, HasImageFeatureProperties, HasEngine, HasCandidateLabelsProperties, HasRescaleFactor): """BLIPForQuestionAnswering can load BLIP models for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> visualQAClassifier = BLIPForQuestionAnswering.pretrained() \\ ... .setInputCols(["image_assembler"]) \\ ... .setOutputCol("answer") The default model is ``"blip_vqa_base"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Question+Answering>`__. To see which models are compatible and how to import them see `Import Transformers into Spark NLP 🚀 <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``IMAGE`` ``DOCUMENT`` ====================== ====================== Parameters ---------- batchSize Batch size. Large values allows faster processing but requires more memory, by default 2 configProtoBytes ConfigProto from tensorflow, serialized into byte array. maxSentenceLength Max sentence length to process, by default 50 Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path) >>> test_df = image_df.withColumn("text", lit("What's this picture about?")) >>> imageAssembler = ImageAssembler() \\ ... .setInputCol("image") \\ ... .setOutputCol("image_assembler") >>> visualQAClassifier = BLIPForQuestionAnswering.pretrained() \\ ... .setInputCols("image_assembler") \\ ... .setOutputCol("answer") \\ ... .setSize(384) >>> pipeline = Pipeline().setStages([ ... imageAssembler, ... visualQAClassifier ... ]) >>> result = pipeline.fit(test_df).transform(test_df) >>> result.select("image_assembler.origin", "answer.result").show(false) +--------------------------------------+------+ |origin |result| +--------------------------------------+------+ |[file:///content/images/cat_image.jpg]|[cats]| +--------------------------------------+------+ """ name = "BLIPForQuestionAnswering" inputAnnotatorTypes = [AnnotatorType.IMAGE] outputAnnotatorType = AnnotatorType.DOCUMENT configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with " "config_proto.SerializeToString()", TypeConverters.toListInt) maxSentenceLength = Param(Params._dummy(), "maxSentenceLength", "Maximum sentence length that the annotator will process. Above this, the sentence is skipped", typeConverter=TypeConverters.toInt)
[docs] def setMaxSentenceSize(self, value): """Sets Maximum sentence length that the annotator will process, by default 50. Parameters ---------- value : int Maximum sentence length that the annotator will process """ return self._set(maxSentenceLength=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.BLIPForQuestionAnswering", java_model=None): super(BLIPForQuestionAnswering, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=2, size=384, maxSentenceLength=50 ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- CLIPForZeroShotClassification The restored model """ from sparknlp.internal import _BLIPForQuestionAnswering jModel = _BLIPForQuestionAnswering(folder, spark_session._jsparkSession)._java_obj return BLIPForQuestionAnswering(java_model=jModel)
@staticmethod
[docs] def pretrained(name="blip_vqa_base", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "blip_vqa_tf" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- CLIPForZeroShotClassification The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(BLIPForQuestionAnswering, name, lang, remote_loc)