sparknlp.annotator.cv.blip_for_question_answering
#
Module Contents#
Classes#
BLIPForQuestionAnswering can load BLIP models for visual question answering. |
- class BLIPForQuestionAnswering(classname='com.johnsnowlabs.nlp.annotators.cv.BLIPForQuestionAnswering', java_model=None)[source]#
BLIPForQuestionAnswering can load BLIP models for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question.
Pretrained models can be loaded with
pretrained()
of the companion object:>>> visualQAClassifier = BLIPForQuestionAnswering.pretrained() \ ... .setInputCols(["image_assembler"]) \ ... .setOutputCol("answer")
The default model is
"blip_vqa_base"
, if no name is provided.For available pretrained models please see the Models Hub.
To see which models are compatible and how to import them see Import Transformers into Spark NLP 🚀.
Input Annotation types
Output Annotation type
IMAGE
DOCUMENT
- Parameters:
- batchSize
Batch size. Large values allows faster processing but requires more memory, by default 2
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
- maxSentenceLength
Max sentence length to process, by default 50
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path) >>> test_df = image_df.withColumn("text", lit("What's this picture about?")) >>> imageAssembler = ImageAssembler() \ ... .setInputCol("image") \ ... .setOutputCol("image_assembler") >>> visualQAClassifier = BLIPForQuestionAnswering.pretrained() \ ... .setInputCols("image_assembler") \ ... .setOutputCol("answer") \ ... .setSize(384) >>> pipeline = Pipeline().setStages([ ... imageAssembler, ... visualQAClassifier ... ]) >>> result = pipeline.fit(test_df).transform(test_df) >>> result.select("image_assembler.origin", "answer.result").show(false) +--------------------------------------+------+ |origin |result| +--------------------------------------+------+ |[file:///content/images/cat_image.jpg]|[cats]| +--------------------------------------+------+
- setMaxSentenceSize(value)[source]#
Sets Maximum sentence length that the annotator will process, by default 50.
- Parameters:
- valueint
Maximum sentence length that the annotator will process
- static loadSavedModel(folder, spark_session)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- CLIPForZeroShotClassification
The restored model
- static pretrained(name='blip_vqa_base', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “blip_vqa_tf”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- CLIPForZeroShotClassification
The restored model