Source code for sparknlp.annotator.cv.smolvlm_transformer

#  Copyright 2017-2024 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from sparknlp.common import *

[docs]class SmolVLMTransformer(AnnotatorModel, HasBatchedAnnotateImage, HasImageFeatureProperties, HasEngine, HasCandidateLabelsProperties, HasRescaleFactor): """ SmolVLMTransformer can load SmolVLM models for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question. SmolVLM is a compact open multimodal model that accepts arbitrary sequences of image and text inputs to produce text outputs. Designed for efficiency, SmolVLM can answer questions about images, describe visual content, create stories grounded on multiple images, or function as a pure language model without visual inputs. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> visualQA = SmolVLMTransformer.pretrained() \ ... .setInputCols(["image_assembler"]) \ ... .setOutputCol("answer") The default model is `"smolvlm_instruct_int4"`, if no name is provided. For available pretrained models, refer to the `Models Hub <https://sparknlp.org/models?task=Question+Answering>`__. Models from the HuggingFace 🧧 Transformers library are also compatible with Spark NLP 🚀. To check compatibility and learn how to import them, see `Import Transformers into Spark NLP 🚀 <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. For extended examples, refer to the `SmolVLMTransformer Test Suite <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/SmolVLMTransformerTest.scala>`_. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``IMAGE`` ``DOCUMENT`` ====================== ====================== Parameters ---------- batchSize : int, optional Batch size. Larger values allow faster processing but require more memory, by default 1. configProtoBytes : bytes, optional ConfigProto from TensorFlow, serialized into a byte array. maxSentenceLength : int, optional Maximum sentence length to process, by default 20. doImageSplitting : bool, optional Whether to split the image, by default True. imageToken : int, optional Token ID for image embeddings, by default 49153. numVisionTokens : int, optional Number of vision tokens, by default 81. maxImageSize : int, optional Maximum image size for the model, by default 384. patchSize : int, optional Patch size for the model, by default 14. paddingConstant : int, optional Padding constant for the model, by default 0. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> from pyspark.sql.functions import lit >>> imageDF = spark.read.format("image").load(path=images_path) >>> testDF = imageDF.withColumn( ... "text", ... lit("<|im_start|>User:<image>Can you describe the image?<end_of_utterance>\nAssistant:") ... ) >>> imageAssembler = ImageAssembler() \ ... .setInputCol("image") \ ... .setOutputCol("image_assembler") >>> visualQAClassifier = SmolVLMTransformer.pretrained() \ ... .setInputCols("image_assembler") \ ... .setOutputCol("answer") >>> pipeline = Pipeline().setStages([ ... imageAssembler, ... visualQAClassifier ... ]) >>> result = pipeline.fit(testDF).transform(testDF) >>> result.select("image_assembler.origin", "answer.result").show(truncate=False) +--------------------------------------+----------------------------------------------------------------------+ |origin |result | +--------------------------------------+----------------------------------------------------------------------+ |[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]| +--------------------------------------+----------------------------------------------------------------------+ """ name = "SmolVLMTransformer" inputAnnotatorTypes = [AnnotatorType.IMAGE] outputAnnotatorType = AnnotatorType.DOCUMENT minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt) maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt) doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean) temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat) topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt) topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", typeConverter=TypeConverters.toFloat) repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", typeConverter=TypeConverters.toFloat) noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt) ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt) beamSize = Param(Params._dummy(), "beamSize", "The Number of beams for beam search.", typeConverter=TypeConverters.toInt) stopTokenIds = Param(Params._dummy(), "stopTokenIds", "Stop tokens to terminate the generation", typeConverter=TypeConverters.toListInt) imageToken = Param(Params._dummy(), "imageToken", "Token id for image embeddings", typeConverter=TypeConverters.toInt) numVisionTokens = Param(Params._dummy(), "numVisionTokens", "Number of vision tokens", typeConverter=TypeConverters.toInt) maxImageSize = Param(Params._dummy(), "maxImageSize", "Maximum image size for the model", typeConverter=TypeConverters.toInt) patchSize = Param(Params._dummy(), "patchSize", "Patch size for the model", typeConverter=TypeConverters.toInt) paddingConstant = Param(Params._dummy(), "paddingConstant", "Padding constant for the model", typeConverter=TypeConverters.toInt) doImageSplitting = Param(Params._dummy(), "doImageSplitting", "Whether to split the image", typeConverter=TypeConverters.toBoolean)
[docs] def setMaxSentenceSize(self, value): """Sets Maximum sentence length that the annotator will process, by default 20. Parameters ---------- value : int Maximum sentence length that the annotator will process """ return self._set(maxSentenceLength=value)
[docs] def setIgnoreTokenIds(self, value): """A list of token ids which are ignored in the decoder's output. Parameters ---------- value : List[int] The words to be filtered out """ return self._set(ignoreTokenIds=value)
[docs] def setStopTokenIds(self, value): """Stop tokens to terminate the generation. Parameters ---------- value : List[int] The tokens that terminate generation """ return self._set(stopTokenIds=value)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setMinOutputLength(self, value): """Sets minimum length of the sequence to be generated. Parameters ---------- value : int Minimum length of the sequence to be generated """ return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value): """Sets maximum length of output text. Parameters ---------- value : int Maximum length of output text """ return self._set(maxOutputLength=value)
[docs] def setDoSample(self, value): """Sets whether or not to use sampling, use greedy decoding otherwise. Parameters ---------- value : bool Whether or not to use sampling; use greedy decoding otherwise """ return self._set(doSample=value)
[docs] def setTemperature(self, value): """Sets the value used to module the next token probabilities. Parameters ---------- value : float The value used to module the next token probabilities """ return self._set(temperature=value)
[docs] def setTopK(self, value): """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering. Parameters ---------- value : int Number of highest probability vocabulary tokens to keep """ return self._set(topK=value)
[docs] def setTopP(self, value): """Sets the top cumulative probability for vocabulary tokens. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. Parameters ---------- value : float Cumulative probability for vocabulary tokens """ return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value): """Sets the parameter for repetition penalty. 1.0 means no penalty. Parameters ---------- value : float The repetition penalty References ---------- See `Ctrl: A Conditional Transformer Language Model For Controllable Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value): """Sets size of n-grams that can only occur once. If set to int > 0, all ngrams of that size can only occur once. Parameters ---------- value : int N-gram size can only occur once """ return self._set(noRepeatNgramSize=value)
[docs] def setBeamSize(self, value): """Sets the number of beam size for beam search, by default `1`. Parameters ---------- value : int Number of beam size for beam search """ return self._set(beamSize=value)
[docs] def setImageToken(self, value): """Sets the token ID for image embeddings. Parameters ---------- value : int Token ID for image embeddings """ return self._set(imageToken=value)
[docs] def setNumVisionTokens(self, value): """Sets the number of vision tokens. Parameters ---------- value : int Number of vision tokens """ return self._set(numVisionTokens=value)
[docs] def setMaxImageSize(self, value): """Sets the maximum image size for the model. Parameters ---------- value : int Maximum image size """ return self._set(maxImageSize=value)
[docs] def setPatchSize(self, value): """Sets the patch size for the model. Parameters ---------- value : int Patch size """ return self._set(patchSize=value)
[docs] def setPaddingConstant(self, value): """Sets the padding constant for the model. Parameters ---------- value : int Padding constant """ return self._set(paddingConstant=value)
[docs] def setDoImageSplitting(self, value): """Sets whether to split the image. Parameters ---------- value : bool Whether to split the image """ return self._set(doImageSplitting=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.SmolVLMTransformer", java_model=None): super(SmolVLMTransformer, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=1, minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=-1, topP=0.9, repetitionPenalty=1.0, noRepeatNgramSize=3, ignoreTokenIds=[], beamSize=1, stopTokenIds=[49154], imageToken=49153, numVisionTokens=81, maxImageSize=384, patchSize=14, paddingConstant=0, doImageSplitting=True )
[docs] @staticmethod def loadSavedModel(folder, spark_session, use_openvino=False): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession use_openvino : bool, optional Whether to use OpenVINO for inference, by default False Returns ------- SmolVLMTransformer The restored model """ from sparknlp.internal import _SmolVLMTransformerLoader jModel = _SmolVLMTransformerLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj return SmolVLMTransformer(java_model=jModel)
[docs] @staticmethod def pretrained(name="smolvlm_instruct_int4", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "smolvlm_instruct_int4" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- SmolVLMTransformer The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(SmolVLMTransformer, name, lang, remote_loc)