sparknlp.annotator.cv.smolvlm_transformer
#
Module Contents#
Classes#
SmolVLMTransformer can load SmolVLM models for visual question answering. The model |
- class SmolVLMTransformer(classname='com.johnsnowlabs.nlp.annotators.cv.SmolVLMTransformer', java_model=None)[source]#
SmolVLMTransformer can load SmolVLM models for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question.
SmolVLM is a compact open multimodal model that accepts arbitrary sequences of image and text inputs to produce text outputs. Designed for efficiency, SmolVLM can answer questions about images, describe visual content, create stories grounded on multiple images, or function as a pure language model without visual inputs. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks.
Pretrained models can be loaded with
pretrained()
of the companion object: >>> visualQA = SmolVLMTransformer.pretrained() … .setInputCols([“image_assembler”]) … .setOutputCol(“answer”)The default model is “smolvlm_instruct_int4”, if no name is provided. For available pretrained models, refer to the Models Hub.
Models from the HuggingFace 🧧 Transformers library are also compatible with Spark NLP 🚀. To check compatibility and learn how to import them, see Import Transformers into Spark NLP 🚀. For extended examples, refer to the SmolVLMTransformer Test Suite.
Input Annotation types
Output Annotation type
IMAGE
DOCUMENT
- Parameters:
- batchSizeint, optional
Batch size. Larger values allow faster processing but require more memory, by default 1.
- configProtoBytesbytes, optional
ConfigProto from TensorFlow, serialized into a byte array.
- maxSentenceLengthint, optional
Maximum sentence length to process, by default 20.
- doImageSplittingbool, optional
Whether to split the image, by default True.
- imageTokenint, optional
Token ID for image embeddings, by default 49153.
- numVisionTokensint, optional
Number of vision tokens, by default 81.
- maxImageSizeint, optional
Maximum image size for the model, by default 384.
- patchSizeint, optional
Patch size for the model, by default 14.
- paddingConstantint, optional
Padding constant for the model, by default 0.
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> from pyspark.sql.functions import lit >>> imageDF = spark.read.format("image").load(path=images_path) >>> testDF = imageDF.withColumn( ... "text", ... lit("<|im_start|>User:<image>Can you describe the image?<end_of_utterance>\nAssistant:") ... ) >>> imageAssembler = ImageAssembler() \ ... .setInputCol("image") \ ... .setOutputCol("image_assembler") >>> visualQAClassifier = SmolVLMTransformer.pretrained() \ ... .setInputCols("image_assembler") \ ... .setOutputCol("answer") >>> pipeline = Pipeline().setStages([ ... imageAssembler, ... visualQAClassifier ... ]) >>> result = pipeline.fit(testDF).transform(testDF) >>> result.select("image_assembler.origin", "answer.result").show(truncate=False) +--------------------------------------+----------------------------------------------------------------------+ |origin |result | +--------------------------------------+----------------------------------------------------------------------+ |[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]| +--------------------------------------+----------------------------------------------------------------------+
- setMaxSentenceSize(value)[source]#
Sets Maximum sentence length that the annotator will process, by default 20. Parameters ———- value : int
Maximum sentence length that the annotator will process
- setIgnoreTokenIds(value)[source]#
A list of token ids which are ignored in the decoder’s output. Parameters ———- value : List[int]
The words to be filtered out
- setStopTokenIds(value)[source]#
Stop tokens to terminate the generation. Parameters ———- value : List[int]
The tokens that terminate generation
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array. Parameters ———- b : List[int]
ConfigProto from tensorflow, serialized into byte array
- setMinOutputLength(value)[source]#
Sets minimum length of the sequence to be generated. Parameters ———- value : int
Minimum length of the sequence to be generated
- setMaxOutputLength(value)[source]#
Sets maximum length of output text. Parameters ———- value : int
Maximum length of output text
- setDoSample(value)[source]#
Sets whether or not to use sampling, use greedy decoding otherwise. Parameters ———- value : bool
Whether or not to use sampling; use greedy decoding otherwise
- setTemperature(value)[source]#
Sets the value used to module the next token probabilities. Parameters ———- value : float
The value used to module the next token probabilities
- setTopK(value)[source]#
Sets the number of highest probability vocabulary tokens to keep for top-k-filtering. Parameters ———- value : int
Number of highest probability vocabulary tokens to keep
- setTopP(value)[source]#
Sets the top cumulative probability for vocabulary tokens. If set to float < 1, only the most probable tokens with probabilities that add up to
topP
or higher are kept for generation. Parameters ———- value : floatCumulative probability for vocabulary tokens
- setRepetitionPenalty(value)[source]#
Sets the parameter for repetition penalty. 1.0 means no penalty. Parameters ———- value : float
The repetition penalty
References#
See Ctrl: A Conditional Transformer Language Model For Controllable Generation for more details.
- setNoRepeatNgramSize(value)[source]#
Sets size of n-grams that can only occur once. If set to int > 0, all ngrams of that size can only occur once. Parameters ———- value : int
N-gram size can only occur once
- setBeamSize(value)[source]#
Sets the number of beam size for beam search, by default 1. Parameters ———- value : int
Number of beam size for beam search
- setImageToken(value)[source]#
Sets the token ID for image embeddings. Parameters ———- value : int
Token ID for image embeddings
- setNumVisionTokens(value)[source]#
Sets the number of vision tokens. Parameters ———- value : int
Number of vision tokens
- setMaxImageSize(value)[source]#
Sets the maximum image size for the model. Parameters ———- value : int
Maximum image size
- setPatchSize(value)[source]#
Sets the patch size for the model. Parameters ———- value : int
Patch size
- setPaddingConstant(value)[source]#
Sets the padding constant for the model. Parameters ———- value : int
Padding constant
- setDoImageSplitting(value)[source]#
Sets whether to split the image. Parameters ———- value : bool
Whether to split the image
- static loadSavedModel(folder, spark_session, use_openvino=False)[source]#
Loads a locally saved model. Parameters ———- folder : str
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- use_openvinobool, optional
Whether to use OpenVINO for inference, by default False
Returns#
- SmolVLMTransformer
The restored model
- static pretrained(name='smolvlm_instruct_int4', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model. Parameters ———- name : str, optional
Name of the pretrained model, by default “smolvlm_instruct_int4”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
Returns#
- SmolVLMTransformer
The restored model