Source code for sparknlp.annotator.cv.vit_for_image_classification

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Contains classes concerning ViTForImageClassification."""

from sparknlp.common import *


[docs]class ViTForImageClassification(AnnotatorModel, HasBatchedAnnotateImage, HasImageFeatureProperties, HasEngine): """Vision Transformer (ViT) for image classification. ViT is a transformer based alternative to the convolutional neural networks usually used for image recognition tasks. Pretrained models can be loaded with ``pretrained`` of the companion object: .. code-block:: python imageClassifier = ViTForImageClassification.pretrained() \\ .setInputCols(["image_assembler"]) \\ .setOutputCol("class") The default model is ``"image_classifier_vit_base_patch16_224"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Image+Classification>`__. Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see `ViTImageClassificationTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/ViTImageClassificationTestSpec.scala>`__. **Paper Abstract:** *While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.* ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``IMAGE`` ``CATEGORY`` ====================== ====================== References ---------- `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`__ Parameters ---------- doResize Whether to resize the input to a certain size doNormalize Whether to normalize the input with mean and standard deviation featureExtractorType Name of model's architecture for feature extraction imageMean The sequence of means for each channel, to be used when normalizing images imageStd The sequence of standard deviations for each channel, to be used when normalizing images resample An optional resampling filter. This can be one of `PIL.Image.NEAREST`, `PIL.Image.BILINEAR` or `PIL.Image.BICUBIC`. Only has an effect if do_resize is set to True. size Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True. configProtoBytes ConfigProto from tensorflow, serialized into byte array. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> imageDF = spark.read \\ ... .format("image") \\ ... .option("dropInvalid", value = True) \\ ... .load("src/test/resources/image/") >>> imageAssembler = ImageAssembler() \\ ... .setInputCol("image") \\ ... .setOutputCol("image_assembler") >>> imageClassifier = ViTForImageClassification \\ ... .pretrained() \\ ... .setInputCols(["image_assembler"]) \\ ... .setOutputCol("class") >>> pipeline = Pipeline().setStages([imageAssembler, imageClassifier]) >>> pipelineDF = pipeline.fit(imageDF).transform(imageDF) >>> pipelineDF \\ ... .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "class.result") \\ ... .show(truncate=False) +-----------------+----------------------------------------------------------+ |image_name |result | +-----------------+----------------------------------------------------------+ |palace.JPEG |[palace] | |egyptian_cat.jpeg|[Egyptian cat] | |hippopotamus.JPEG|[hippopotamus, hippo, river horse, Hippopotamus amphibius]| |hen.JPEG |[hen] | |ostrich.JPEG |[ostrich, Struthio camelus] | |junco.JPEG |[junco, snowbird] | |bluetick.jpg |[bluetick] | |chihuahua.jpg |[Chihuahua] | |tractor.JPEG |[tractor] | |ox.JPEG |[ox] | +-----------------+----------------------------------------------------------+ """ name = "ViTForImageClassification" inputAnnotatorTypes = [AnnotatorType.IMAGE] outputAnnotatorType = AnnotatorType.CATEGORY configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with " "config_proto.SerializeToString()", TypeConverters.toListInt)
[docs] def getClasses(self): """ Returns labels used to train this model """ return self._call_java("getClasses")
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.ViTForImageClassification", java_model=None): super(ViTForImageClassification, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=2 ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- ViTForImageClassification The restored model """ from sparknlp.internal import _ViTForImageClassification jModel = _ViTForImageClassification(folder, spark_session._jsparkSession)._java_obj return ViTForImageClassification(java_model=jModel)
@staticmethod
[docs] def pretrained(name="image_classifier_vit_base_patch16_224", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "image_classifier_vit_base_patch16_224" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- ViTForImageClassification The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(ViTForImageClassification, name, lang, remote_loc)