sparknlp.annotator.cv.vit_for_image_classification#

Contains classes concerning ViTForImageClassification.

Module Contents#

Classes#

ViTForImageClassification

Vision Transformer (ViT) for image classification.

class ViTForImageClassification(classname='com.johnsnowlabs.nlp.annotators.cv.ViTForImageClassification', java_model=None)[source]#

Vision Transformer (ViT) for image classification.

ViT is a transformer based alternative to the convolutional neural networks usually used for image recognition tasks.

Pretrained models can be loaded with pretrained of the companion object:

imageClassifier = ViTForImageClassification.pretrained() \
    .setInputCols(["image_assembler"]) \
    .setOutputCol("class")

The default model is "image_classifier_vit_base_patch16_224", if no name is provided.

For available pretrained models please see the Models Hub.

Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see JohnSnowLabs/spark-nlp#5669 and to see more extended examples, see ViTImageClassificationTestSpec.

Paper Abstract:

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

Input Annotation types

Output Annotation type

IMAGE

CATEGORY

Parameters:
doResize

Whether to resize the input to a certain size

doNormalize

Whether to normalize the input with mean and standard deviation

featureExtractorType

Name of model’s architecture for feature extraction

imageMean

The sequence of means for each channel, to be used when normalizing images

imageStd

The sequence of standard deviations for each channel, to be used when normalizing images

resample

An optional resampling filter. This can be one of PIL.Image.NEAREST, PIL.Image.BILINEAR or PIL.Image.BICUBIC. Only has an effect if do_resize is set to True.

size

Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.

configProtoBytes

ConfigProto from tensorflow, serialized into byte array.

References

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> imageDF = spark.read \
...     .format("image") \
...     .option("dropInvalid", value = True) \
...     .load("src/test/resources/image/")
>>> imageAssembler = ImageAssembler() \
...     .setInputCol("image") \
...     .setOutputCol("image_assembler")
>>> imageClassifier = ViTForImageClassification \
...     .pretrained() \
...     .setInputCols(["image_assembler"]) \
...     .setOutputCol("class")
>>> pipeline = Pipeline().setStages([imageAssembler, imageClassifier])
>>> pipelineDF = pipeline.fit(imageDF).transform(imageDF)
>>> pipelineDF \
...   .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "class.result") \
...   .show(truncate=False)
+-----------------+----------------------------------------------------------+
|image_name       |result                                                    |
+-----------------+----------------------------------------------------------+
|palace.JPEG      |[palace]                                                  |
|egyptian_cat.jpeg|[Egyptian cat]                                            |
|hippopotamus.JPEG|[hippopotamus, hippo, river horse, Hippopotamus amphibius]|
|hen.JPEG         |[hen]                                                     |
|ostrich.JPEG     |[ostrich, Struthio camelus]                               |
|junco.JPEG       |[junco, snowbird]                                         |
|bluetick.jpg     |[bluetick]                                                |
|chihuahua.jpg    |[Chihuahua]                                               |
|tractor.JPEG     |[tractor]                                                 |
|ox.JPEG          |[ox]                                                      |
+-----------------+----------------------------------------------------------+
getClasses()[source]#

Returns labels used to train this model

setConfigProtoBytes(b)[source]#

Sets configProto from tensorflow, serialized into byte array.

Parameters:
bList[int]

ConfigProto from tensorflow, serialized into byte array

static loadSavedModel(folder, spark_session)[source]#

Loads a locally saved model.

Parameters:
folderstr

Folder of the saved model

spark_sessionpyspark.sql.SparkSession

The current SparkSession

Returns:
ViTForImageClassification

The restored model

static pretrained(name='image_classifier_vit_base_patch16_224', lang='en', remote_loc=None)[source]#

Downloads and loads a pretrained model.

Parameters:
namestr, optional

Name of the pretrained model, by default “image_classifier_vit_base_patch16_224”

langstr, optional

Language of the pretrained model, by default “en”

remote_locstr, optional

Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.

Returns:
ViTForImageClassification

The restored model