Source code for sparknlp.annotator.embeddings.camembert_embeddings

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for CamemBertEmbeddings."""

from sparknlp.common import *


[docs]class CamemBertEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasCaseSensitiveProperties, HasStorageRef, HasBatchedAnnotate, HasEngine, HasMaxSentenceLengthLimit): """The CamemBERT model was proposed in CamemBERT: a Tasty French Language Model by Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah, and Benoît Sagot. It is based on Facebook's RoBERTa model released in 2019. It is a model trained on 138GB of French text. Pretrained models can be loaded with ``pretrained`` of the companion object: >>> embeddings = CamemBertEmbeddings.pretrained() \\ ... .setInputCols(["token", "document"]) \\ ... .setOutputCol("camembert_embeddings") The default model is ``"camembert_base"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Embeddings>`__. For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_bert.ipynb>`__ and the `CamemBertEmbeddingsTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/CamemBertEmbeddingsTestSpec.scala>`__. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS`` ====================== ====================== Parameters ---------- batchSize Size of every batch , by default 8 dimension Number of embedding dimensions, by default 768 caseSensitive Whether to ignore case in tokens for embeddings matching, by default False maxSentenceLength Max sentence length to process, by default 128 configProtoBytes ConfigProto from tensorflow, serialized into byte array. References ---------- `CamemBERT: a Tasty French Language Model <https://arxiv.org/abs/1911.03894>`__ https://huggingface.co/camembert **Paper abstract** *Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for other languages, taking French as an example and evaluating our language models on part-of-speech tagging, dependency parsing, named entity recognition and natural language inference tasks. We show that the use of web crawled data is preferable to the use of Wikipedia data. More surprisingly, we show that a relatively small web crawled dataset (4GB) leads to results that are as good as those obtained using larger datasets (130+GB). Our best performing model CamemBERT reaches or improves the state of the art in all four downstream tasks.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> tokenizer = Tokenizer() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("token") >>> embeddings = CamemBertEmbeddings.pretrained() \\ ... .setInputCols(["token", "document"]) \\ ... .setOutputCol("camembert_embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \\ ... .setInputCols(["camembert_embeddings"]) \\ ... .setOutputCols("finished_embeddings") \\ ... .setOutputAsVector(True) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... tokenizer, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["C'est une phrase."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[0.08442357927560806,-0.12863239645957947,-0.03835778683423996,0.200479581952...| |[0.048462312668561935,0.12637358903884888,-0.27429091930389404,-0.07516729831...| |[0.02690504491329193,0.12104076147079468,0.012526623904705048,-0.031543646007...| |[0.05877285450696945,-0.08773420006036758,-0.06381352990865707,0.122621834278...| +--------------------------------------------------------------------------------+ """ name = "CamemBertEmbeddings" inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN] outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS configProtoBytes = Param( Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt, )
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.CamemBertEmbeddings", java_model=None): super(CamemBertEmbeddings, self).__init__( classname=classname, java_model=java_model ) self._setDefault( batchSize=8, dimension=768, maxSentenceLength=128, caseSensitive=True ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- CamemBertEmbeddings The restored model """ from sparknlp.internal import _CamemBertLoader jModel = _CamemBertLoader(folder, spark_session._jsparkSession)._java_obj return CamemBertEmbeddings(java_model=jModel)
@staticmethod
[docs] def pretrained(name="camembert_base", lang="fr", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "camembert_base" lang : str, optional Language of the pretrained model, by default "fr" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- CamemBertEmbeddings The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(CamemBertEmbeddings, name, lang, remote_loc)