Source code for sparknlp.annotator.embeddings.longformer_embeddings

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for LongformerEmbeddings."""

from sparknlp.common import *


[docs]class LongformerEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasCaseSensitiveProperties, HasStorageRef, HasBatchedAnnotate, HasEngine, HasLongMaxSentenceLengthLimit): """Longformer is a transformer model for long documents. The Longformer model was presented in `Longformer: The Long-Document Transformer` by Iz Beltagy, Matthew E. Peters, Arman Cohan. longformer-base-4096 is a BERT-like model started from the RoBERTa checkpoint and pretrained for MLM on long documents. It supports sequences of length up to 4,096. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> embeddings = LongformerEmbeddings.pretrained() \\ ... .setInputCols(["document", "token"]) \\ ... .setOutputCol("embeddings") The default model is ``"longformer_base_4096"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Embeddings>`__. To see which models are compatible and how to import them see `Import Transformers into Spark NLP 🚀 <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT, TOKEN`` ``WORD_EMBEDDINGS`` ====================== ====================== Parameters ---------- batchSize Size of every batch, by default 8 dimension Number of embedding dimensions, by default 768 caseSensitive Whether to ignore case in tokens for embeddings matching, by default True maxSentenceLength Max sentence length to process, by default 1024 configProtoBytes ConfigProto from tensorflow, serialized into byte array. References ---------- `Longformer: The Long-Document Transformer <https://arxiv.org/pdf/2004.05150.pdf>`__ **Paper Abstract:** *Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization dataset.* The original code can be found at `Longformer: The Long-Document Transformer <https://github.com/allenai/longformer>`__. Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> tokenizer = Tokenizer() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("token") >>> embeddings = LongformerEmbeddings.pretrained() \\ ... .setInputCols(["document", "token"]) \\ ... .setOutputCol("embeddings") \\ ... .setCaseSensitive(True) >>> embeddingsFinisher = EmbeddingsFinisher() \\ >>> .setInputCols(["embeddings"]) \\ ... .setOutputCols("finished_embeddings") \\ ... .setOutputAsVector(True) \\ ... .setCleanAnnotations(False) >>> pipeline = Pipeline() \\ ... .setStages([ ... documentAssembler, ... tokenizer, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[0.18792399764060974,-0.14591649174690247,0.20547787845134735,0.1468472778797...| |[0.22845706343650818,0.18073144555091858,0.09725798666477203,-0.0417917296290...| |[0.07037967443466187,-0.14801117777824402,-0.03603338822722435,-0.17893412709...| |[-0.08734266459941864,0.2486150562763214,-0.009067727252840996,-0.24408400058...| |[0.22409197688102722,-0.4312366545200348,0.1401449590921402,0.356410235166549...| +--------------------------------------------------------------------------------+ """ name = "LongformerEmbeddings" inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN] outputAnnotatorType = AnnotatorType.WORD_EMBEDDINGS configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.LongformerEmbeddings", java_model=None): super(LongformerEmbeddings, self).__init__( classname=classname, java_model=java_model ) self._setDefault( dimension=768, batchSize=8, maxSentenceLength=1024, caseSensitive=True ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- LongformerEmbeddings The restored model """ from sparknlp.internal import _LongformerLoader jModel = _LongformerLoader(folder, spark_session._jsparkSession)._java_obj return LongformerEmbeddings(java_model=jModel)
@staticmethod
[docs] def pretrained(name="longformer_base_4096", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "longformer_base_4096" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- LongformerEmbeddings The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(LongformerEmbeddings, name, lang, remote_loc)