sparknlp.annotator.embeddings.longformer_embeddings#

Contains classes for LongformerEmbeddings.

Module Contents#

Classes#

LongformerEmbeddings

Longformer is a transformer model for long documents. The Longformer

class LongformerEmbeddings(classname='com.johnsnowlabs.nlp.embeddings.LongformerEmbeddings', java_model=None)[source]#

Longformer is a transformer model for long documents. The Longformer model was presented in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan. longformer-base-4096 is a BERT-like model started from the RoBERTa checkpoint and pretrained for MLM on long documents. It supports sequences of length up to 4,096.

Pretrained models can be loaded with pretrained() of the companion object:

>>> embeddings = LongformerEmbeddings.pretrained() \
...     .setInputCols(["document", "token"]) \
...     .setOutputCol("embeddings")

The default model is "longformer_base_4096", if no name is provided. For available pretrained models please see the Models Hub.

To see which models are compatible and how to import them see Import Transformers into Spark NLP 🚀.

Input Annotation types

Output Annotation type

DOCUMENT, TOKEN

WORD_EMBEDDINGS

Parameters:
batchSize

Size of every batch, by default 8

dimension

Number of embedding dimensions, by default 768

caseSensitive

Whether to ignore case in tokens for embeddings matching, by default True

maxSentenceLength

Max sentence length to process, by default 1024

configProtoBytes

ConfigProto from tensorflow, serialized into byte array.

References

Longformer: The Long-Document Transformer

Paper Abstract:

Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or longer. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization dataset.

The original code can be found at Longformer: The Long-Document Transformer.

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \
...     .setInputCol("text") \
...     .setOutputCol("document")
>>> tokenizer = Tokenizer() \
...     .setInputCols(["document"]) \
...     .setOutputCol("token")
>>> embeddings = LongformerEmbeddings.pretrained() \
...     .setInputCols(["document", "token"]) \
...     .setOutputCol("embeddings") \
...     .setCaseSensitive(True)
>>> embeddingsFinisher = EmbeddingsFinisher() \
>>>     .setInputCols(["embeddings"]) \
...     .setOutputCols("finished_embeddings") \
...     .setOutputAsVector(True) \
...     .setCleanAnnotations(False)
>>> pipeline = Pipeline() \
...     .setStages([
...         documentAssembler,
...         tokenizer,
...         embeddings,
...         embeddingsFinisher
...     ])
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
|                                                                          result|
+--------------------------------------------------------------------------------+
|[0.18792399764060974,-0.14591649174690247,0.20547787845134735,0.1468472778797...|
|[0.22845706343650818,0.18073144555091858,0.09725798666477203,-0.0417917296290...|
|[0.07037967443466187,-0.14801117777824402,-0.03603338822722435,-0.17893412709...|
|[-0.08734266459941864,0.2486150562763214,-0.009067727252840996,-0.24408400058...|
|[0.22409197688102722,-0.4312366545200348,0.1401449590921402,0.356410235166549...|
+--------------------------------------------------------------------------------+
setConfigProtoBytes(b)[source]#

Sets configProto from tensorflow, serialized into byte array.

Parameters:
bList[int]

ConfigProto from tensorflow, serialized into byte array

static loadSavedModel(folder, spark_session)[source]#

Loads a locally saved model.

Parameters:
folderstr

Folder of the saved model

spark_sessionpyspark.sql.SparkSession

The current SparkSession

Returns:
LongformerEmbeddings

The restored model

static pretrained(name='longformer_base_4096', lang='en', remote_loc=None)[source]#

Downloads and loads a pretrained model.

Parameters:
namestr, optional

Name of the pretrained model, by default “longformer_base_4096”

langstr, optional

Language of the pretrained model, by default “en”

remote_locstr, optional

Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.

Returns:
LongformerEmbeddings

The restored model