Source code for sparknlp.annotator.embeddings.mpnet_embeddings

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for E5Embeddings."""

from sparknlp.common import *


[docs]class MPNetEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasCaseSensitiveProperties, HasStorageRef, HasBatchedAnnotate, HasMaxSentenceLengthLimit): """Sentence embeddings using MPNet. MPNet adopts a novel pre-training method, named masked and permuted language modeling, to inherit the advantages of masked language modeling and permuted language modeling for natural language understanding. Note that this annotator is only supported for Spark Versions 3.4 and up. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> embeddings = MPNetEmbeddings.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("mpnet_embeddings") The default model is ``"all_mpnet_base_v2"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?q=MPNet>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT`` ``SENTENCE_EMBEDDINGS`` ====================== ====================== Parameters ---------- batchSize Size of every batch , by default 8 dimension Number of embedding dimensions, by default 768 caseSensitive Whether to ignore case in tokens for embeddings matching, by default False maxSentenceLength Max sentence length to process, by default 512 configProtoBytes ConfigProto from tensorflow, serialized into byte array. References ---------- `MPNet: Masked and Permuted Pre-training for Language Understanding <https://arxiv.org/pdf/2004.09297>`__ https://github.com/microsoft/MPNet **Paper abstract** *BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models. Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g., BERT, XLNet, RoBERTa) under the same model setting.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> embeddings = MPNetEmbeddings.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("mpnet_embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \\ ... .setInputCols(["mpnet_embeddings"]) \\ ... .setOutputCols("finished_embeddings") \\ ... .setOutputAsVector(True) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["This is an example sentence", "Each sentence is converted"]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[[0.022502584, -0.078291744, -0.023030775, -0.0051000593, -0.080340415, 0.039...| |[[0.041702367, 0.0010974605, -0.015534201, 0.07092203, -0.0017729357, 0.04661...| +--------------------------------------------------------------------------------+ """ name = "MPNetEmbeddings" inputAnnotatorTypes = [AnnotatorType.DOCUMENT] outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.MPNetEmbeddings", java_model=None): super(MPNetEmbeddings, self).__init__( classname=classname, java_model=java_model ) self._setDefault( dimension=768, batchSize=8, maxSentenceLength=512, caseSensitive=False, ) @staticmethod
[docs] def loadSavedModel(folder, spark_session): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- MPNetEmbeddings The restored model """ from sparknlp.internal import _MPNetLoader jModel = _MPNetLoader(folder, spark_session._jsparkSession)._java_obj return MPNetEmbeddings(java_model=jModel)
@staticmethod
[docs] def pretrained(name="all_mpnet_base_v2", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "all_mpnet_base_v2" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- MPNetEmbeddings The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(MPNetEmbeddings, name, lang, remote_loc)