sparknlp.annotator.embeddings.mpnet_embeddings
#
Contains classes for E5Embeddings.
Module Contents#
Classes#
Sentence embeddings using MPNet. |
- class MPNetEmbeddings(classname='com.johnsnowlabs.nlp.embeddings.MPNetEmbeddings', java_model=None)[source]#
Sentence embeddings using MPNet.
MPNet adopts a novel pre-training method, named masked and permuted language modeling, to inherit the advantages of masked language modeling and permuted language modeling for natural language understanding.
Note that this annotator is only supported for Spark Versions 3.4 and up.
Pretrained models can be loaded with
pretrained()
of the companion object:>>> embeddings = MPNetEmbeddings.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("mpnet_embeddings")
The default model is
"all_mpnet_base_v2"
, if no name is provided.For available pretrained models please see the Models Hub.
Input Annotation types
Output Annotation type
DOCUMENT
SENTENCE_EMBEDDINGS
- Parameters:
- batchSize
Size of every batch , by default 8
- dimension
Number of embedding dimensions, by default 768
- caseSensitive
Whether to ignore case in tokens for embeddings matching, by default False
- maxSentenceLength
Max sentence length to process, by default 512
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
References
MPNet: Masked and Permuted Pre-training for Language Understanding
Paper abstract
- *BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models.
Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g., BERT, XLNet, RoBERTa) under the same model setting.*
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> embeddings = MPNetEmbeddings.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("mpnet_embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \ ... .setInputCols(["mpnet_embeddings"]) \ ... .setOutputCols("finished_embeddings") \ ... .setOutputAsVector(True) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["This is an example sentence", "Each sentence is converted"]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[[0.022502584, -0.078291744, -0.023030775, -0.0051000593, -0.080340415, 0.039...| |[[0.041702367, 0.0010974605, -0.015534201, 0.07092203, -0.0017729357, 0.04661...| +--------------------------------------------------------------------------------+
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
- bList[int]
ConfigProto from tensorflow, serialized into byte array
- static loadSavedModel(folder, spark_session)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- MPNetEmbeddings
The restored model
- static pretrained(name='all_mpnet_base_v2', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “all_mpnet_base_v2”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- MPNetEmbeddings
The restored model