Source code for sparknlp.annotator.embeddings.universal_sentence_encoder

#  Copyright 2017-2022 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for the UniversalSentenceEncoder."""

from sparknlp.common import *


[docs]class UniversalSentenceEncoder(AnnotatorModel, HasEmbeddingsProperties, HasStorageRef, HasBatchedAnnotate, HasEngine): """The Universal Sentence Encoder encodes text into high dimensional vectors that can be used for text classification, semantic similarity, clustering and other natural language tasks. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> useEmbeddings = UniversalSentenceEncoder.pretrained() \\ ... .setInputCols(["sentence"]) \\ ... .setOutputCol("sentence_embeddings") The default model is ``"tfhub_use"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Embeddings>`__. For extended examples of usage, see the `Examples <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/classification/ClassifierDL_Train_multi_class_news_category_classifier.ipynb>`__. ====================== ======================= Input Annotation types Output Annotation type ====================== ======================= ``DOCUMENT`` ``SENTENCE_EMBEDDINGS`` ====================== ======================= Parameters ---------- dimension Number of embedding dimensions loadSP Whether to load SentencePiece ops file which is required only by multi-lingual models, by default False configProtoBytes ConfigProto from tensorflow, serialized into byte array. References ---------- `Universal Sentence Encoder <https://arxiv.org/abs/1803.11175>`__ https://tfhub.dev/google/universal-sentence-encoder/2 **Paper abstract:** *We present models for encoding sentences into embedding vectors that specifically target transfer learning to other NLP tasks. The models are efficient and result in accurate performance on diverse transfer tasks. Two variants of the encoding models allow for trade-offs between accuracy and compute resources. For both variants, we investigate and report the relationship between model complexity, resource consumption, the availability of transfer task training data, and task performance. Comparisons are made with baselines that use word level transfer learning via pretrained word embeddings as well as baselines do not use any transfer learning. We find that transfer learning using sentence embeddings tends to outperform word level transfer. With transfer learning via sentence embeddings, we observe surprisingly good performance with minimal amounts of supervised training data for a transfer task. We obtain encouraging results on Word Embedding Association Tests (WEAT) targeted at detecting model bias. Our pre-trained sentence encoding models are made freely available for download and on TF Hub.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("document") >>> sentence = SentenceDetector() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("sentence") >>> embeddings = UniversalSentenceEncoder.pretrained() \\ ... .setInputCols(["sentence"]) \\ ... .setOutputCol("sentence_embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \\ ... .setInputCols(["sentence_embeddings"]) \\ ... .setOutputCols("finished_embeddings") \\ ... .setOutputAsVector(True) \\ ... .setCleanAnnotations(False) >>> pipeline = Pipeline() \\ ... .setStages([ ... documentAssembler, ... sentence, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[0.04616805538535118,0.022307956591248512,-0.044395286589860916,-0.0016493503...| +--------------------------------------------------------------------------------+ """ name = "UniversalSentenceEncoder" inputAnnotatorTypes = [AnnotatorType.DOCUMENT] outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS loadSP = Param(Params._dummy(), "loadSP", "Whether to load SentencePiece ops file which is required only by multi-lingual models. " "This is not changeable after it's set with a pretrained model nor it is compatible with Windows.", typeConverter=TypeConverters.toBoolean) configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt)
[docs] def setLoadSP(self, value): """Sets whether to load SentencePiece ops file which is required only by multi-lingual models, by default False. Parameters ---------- value : bool Whether to load SentencePiece ops file which is required only by multi-lingual models """ return self._set(loadSP=value)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder", java_model=None): super(UniversalSentenceEncoder, self).__init__( classname=classname, java_model=java_model ) self._setDefault( loadSP=False, dimension=512, batchSize=2 ) @staticmethod
[docs] def loadSavedModel(folder, spark_session, loadsp=False): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- UniversalSentenceEncoder The restored model """ from sparknlp.internal import _USELoader jModel = _USELoader(folder, spark_session._jsparkSession, loadsp)._java_obj return UniversalSentenceEncoder(java_model=jModel)
@staticmethod
[docs] def pretrained(name="tfhub_use", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "tfhub_use" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- UniversalSentenceEncoder The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(UniversalSentenceEncoder, name, lang, remote_loc)