sparknlp.annotator.embeddings.universal_sentence_encoder
#
Contains classes for the UniversalSentenceEncoder.
Module Contents#
Classes#
The Universal Sentence Encoder encodes text into high dimensional vectors |
- class UniversalSentenceEncoder(classname='com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder', java_model=None)[source]#
The Universal Sentence Encoder encodes text into high dimensional vectors that can be used for text classification, semantic similarity, clustering and other natural language tasks.
Pretrained models can be loaded with
pretrained()
of the companion object:>>> useEmbeddings = UniversalSentenceEncoder.pretrained() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("sentence_embeddings")
The default model is
"tfhub_use"
, if no name is provided. For available pretrained models please see the Models Hub.For extended examples of usage, see the Examples.
Input Annotation types
Output Annotation type
DOCUMENT
SENTENCE_EMBEDDINGS
- Parameters:
- dimension
Number of embedding dimensions
- loadSP
Whether to load SentencePiece ops file which is required only by multi-lingual models, by default False
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
References
https://tfhub.dev/google/universal-sentence-encoder/2
Paper abstract:
We present models for encoding sentences into embedding vectors that specifically target transfer learning to other NLP tasks. The models are efficient and result in accurate performance on diverse transfer tasks. Two variants of the encoding models allow for trade-offs between accuracy and compute resources. For both variants, we investigate and report the relationship between model complexity, resource consumption, the availability of transfer task training data, and task performance. Comparisons are made with baselines that use word level transfer learning via pretrained word embeddings as well as baselines do not use any transfer learning. We find that transfer learning using sentence embeddings tends to outperform word level transfer. With transfer learning via sentence embeddings, we observe surprisingly good performance with minimal amounts of supervised training data for a transfer task. We obtain encouraging results on Word Embedding Association Tests (WEAT) targeted at detecting model bias. Our pre-trained sentence encoding models are made freely available for download and on TF Hub.
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentence = SentenceDetector() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence") >>> embeddings = UniversalSentenceEncoder.pretrained() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("sentence_embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \ ... .setInputCols(["sentence_embeddings"]) \ ... .setOutputCols("finished_embeddings") \ ... .setOutputAsVector(True) \ ... .setCleanAnnotations(False) >>> pipeline = Pipeline() \ ... .setStages([ ... documentAssembler, ... sentence, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[0.04616805538535118,0.022307956591248512,-0.044395286589860916,-0.0016493503...| +--------------------------------------------------------------------------------+
- setLoadSP(value)[source]#
Sets whether to load SentencePiece ops file which is required only by multi-lingual models, by default False.
- Parameters:
- valuebool
Whether to load SentencePiece ops file which is required only by multi-lingual models
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
- bList[int]
ConfigProto from tensorflow, serialized into byte array
- static loadSavedModel(folder, spark_session, loadsp=False)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- UniversalSentenceEncoder
The restored model
- static pretrained(name='tfhub_use', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “tfhub_use”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- UniversalSentenceEncoder
The restored model