Source code for sparknlp.annotator.seq2seq.cpm_transformer

#  Copyright 2017-2024 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for the CPMTransformer."""

from sparknlp.common import *


[docs]class CPMTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): """MiniCPM: Unveiling the Potential of End-side Large Language Models MiniCPM is a series of edge-side large language models, with the base model, MiniCPM-2B, having 2.4B non-embedding parameters. It ranks closely with Mistral-7B on comprehensive benchmarks (with better performance in Chinese, mathematics, and coding abilities), surpassing models like Llama2-13B, MPT-30B, and Falcon-40B. On the MTBench benchmark, which is closest to user experience, MiniCPM-2B also outperforms many representative open-source models such as Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, and Zephyr-7B-alpha. After DPO, MiniCPM outperforms Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, Zephyr-7B-alpha, etc. on MTBench. MiniCPM-V, based on MiniCPM-2B, achieves the best overall performance among multimodel models of the same scale, surpassing existing multimodal large models built on Phi-2 and achieving performance comparable to or even better than 9.6B Qwen-VL-Chat on some tasks. MiniCPM can be deployed and infer on smartphones, and the speed of streaming output is relatively higher than the verbal speed of human. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> cpm = CPMTransformer.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("generation") The default model is ``"llam2-7b"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?q=cpm>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT`` ``DOCUMENT`` ====================== ====================== Parameters ---------- configProtoBytes ConfigProto from tensorflow, serialized into byte array. minOutputLength Minimum length of the sequence to be generated, by default 0 maxOutputLength Maximum length of output text, by default 20 doSample Whether or not to use sampling; use greedy decoding otherwise, by default False temperature The value used to module the next token probabilities, by default 1.0 topK The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50 topP Top cumulative probability for vocabulary tokens, by default 1.0 If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. repetitionPenalty The parameter for repetition penalty, 1.0 means no penalty. , by default 1.0 noRepeatNgramSize If set to int > 0, all ngrams of that size can only occur once, by default 0 ignoreTokenIds A list of token ids which are ignored in the decoder's output, by default [] Notes ----- This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended. References ---------- - `MiniCPM: Unveiling the Potential of End-side Large Language Models <https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20>` - https://github.com/OpenBMB/MiniCPM Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("documents") >>> cpm = CPMTransformer.pretrained("llama_2_7b_chat_hf_int4") \\ ... .setInputCols(["documents"]) \\ ... .setMaxOutputLength(50) \\ ... .setOutputCol("generation") >>> pipeline = Pipeline().setStages([documentAssembler, cpm]) >>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("summaries.generation").show(truncate=False) +------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |[My name is Leonardo. I am a student at the University of California, Los Angeles. I have a passion for writing and learning about different cultures. I enjoy playing basketball and watching movies]| -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ """ name = "CPMTransformer" inputAnnotatorTypes = [AnnotatorType.DOCUMENT] outputAnnotatorType = AnnotatorType.DOCUMENT configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt) minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt) maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt) doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean) temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat) topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt) topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", typeConverter=TypeConverters.toFloat) repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", typeConverter=TypeConverters.toFloat) noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt) ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt)
[docs] def setIgnoreTokenIds(self, value): """A list of token ids which are ignored in the decoder's output. Parameters ---------- value : List[int] The words to be filtered out """ return self._set(ignoreTokenIds=value)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setMinOutputLength(self, value): """Sets minimum length of the sequence to be generated. Parameters ---------- value : int Minimum length of the sequence to be generated """ return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value): """Sets maximum length of output text. Parameters ---------- value : int Maximum length of output text """ return self._set(maxOutputLength=value)
[docs] def setDoSample(self, value): """Sets whether or not to use sampling, use greedy decoding otherwise. Parameters ---------- value : bool Whether or not to use sampling; use greedy decoding otherwise """ return self._set(doSample=value)
[docs] def setTemperature(self, value): """Sets the value used to module the next token probabilities. Parameters ---------- value : float The value used to module the next token probabilities """ return self._set(temperature=value)
[docs] def setTopK(self, value): """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering. Parameters ---------- value : int Number of highest probability vocabulary tokens to keep """ return self._set(topK=value)
[docs] def setTopP(self, value): """Sets the top cumulative probability for vocabulary tokens. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. Parameters ---------- value : float Cumulative probability for vocabulary tokens """ return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value): """Sets the parameter for repetition penalty. 1.0 means no penalty. Parameters ---------- value : float The repetition penalty References ---------- See `Ctrl: A Conditional Transformer Language Model For Controllable Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value): """Sets size of n-grams that can only occur once. If set to int > 0, all ngrams of that size can only occur once. Parameters ---------- value : int N-gram size can only occur once """ return self._set(noRepeatNgramSize=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.CPMTransformer", java_model=None): super(CPMTransformer, self).__init__(classname=classname, java_model=java_model) self._setDefault(minOutputLength=0, maxOutputLength=50, doSample=False, temperature=0.8, topK=100, topP=0.8, repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1) @staticmethod
[docs] def loadSavedModel(folder, spark_session, use_openvino = False): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- CPMTransformer The restored model """ from sparknlp.internal import _CPMLoader jModel = _CPMLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj return CPMTransformer(java_model=jModel)
@staticmethod
[docs] def pretrained(name="llama_2_7b_chat_hf_int4", lang="en", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "llama_2_7b_chat_hf_int4" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- CPMTransformer The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(CPMTransformer, name, lang, remote_loc)