sparknlp.annotator.seq2seq.cpm_transformer#

Contains classes for the CPMTransformer.

Module Contents#

Classes#

CPMTransformer

MiniCPM: Unveiling the Potential of End-side Large Language Models

class CPMTransformer(classname='com.johnsnowlabs.nlp.annotators.seq2seq.CPMTransformer', java_model=None)[source]#

MiniCPM: Unveiling the Potential of End-side Large Language Models

MiniCPM is a series of edge-side large language models, with the base model, MiniCPM-2B, having 2.4B non-embedding parameters. It ranks closely with Mistral-7B on comprehensive benchmarks (with better performance in Chinese, mathematics, and coding abilities), surpassing models like Llama2-13B, MPT-30B, and Falcon-40B. On the MTBench benchmark, which is closest to user experience, MiniCPM-2B also outperforms many representative open-source models such as Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, and Zephyr-7B-alpha.

After DPO, MiniCPM outperforms Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, Zephyr-7B-alpha, etc. on MTBench.

MiniCPM-V, based on MiniCPM-2B, achieves the best overall performance among multimodel models of the same scale, surpassing existing multimodal large models built on Phi-2 and achieving performance comparable to or even better than 9.6B Qwen-VL-Chat on some tasks.

MiniCPM can be deployed and infer on smartphones, and the speed of streaming output is relatively higher than the verbal speed of human.

Pretrained models can be loaded with pretrained() of the companion object:

>>> cpm = CPMTransformer.pretrained() \
...     .setInputCols(["document"]) \
...     .setOutputCol("generation")

The default model is "llam2-7b", if no name is provided. For available pretrained models please see the Models Hub.

Input Annotation types

Output Annotation type

DOCUMENT

DOCUMENT

Parameters:
configProtoBytes

ConfigProto from tensorflow, serialized into byte array.

minOutputLength

Minimum length of the sequence to be generated, by default 0

maxOutputLength

Maximum length of output text, by default 20

doSample

Whether or not to use sampling; use greedy decoding otherwise, by default False

temperature

The value used to module the next token probabilities, by default 1.0

topK

The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50

topP

Top cumulative probability for vocabulary tokens, by default 1.0

If set to float < 1, only the most probable tokens with probabilities that add up to topP or higher are kept for generation.

repetitionPenalty

The parameter for repetition penalty, 1.0 means no penalty. , by default 1.0

noRepeatNgramSize

If set to int > 0, all ngrams of that size can only occur once, by default 0

ignoreTokenIds

A list of token ids which are ignored in the decoder’s output, by default []

Notes

This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended.

References

  • MiniCPM: Unveiling the Potential of End-side Large Language Models <https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20>

  • OpenBMB/MiniCPM

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \
...     .setInputCol("text") \
...     .setOutputCol("documents")
>>> cpm = CPMTransformer.pretrained("llama_2_7b_chat_hf_int4") \
...     .setInputCols(["documents"]) \
...     .setMaxOutputLength(50) \
...     .setOutputCol("generation")
>>> pipeline = Pipeline().setStages([documentAssembler, cpm])
>>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.select("summaries.generation").show(truncate=False)
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|result                                                                                                                                                                                                |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|[My name is Leonardo. I am a student at the University of California, Los Angeles. I have a passion for writing and learning about different cultures. I enjoy playing basketball and watching movies]|
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
setIgnoreTokenIds(value)[source]#

A list of token ids which are ignored in the decoder’s output.

Parameters:
valueList[int]

The words to be filtered out

setConfigProtoBytes(b)[source]#

Sets configProto from tensorflow, serialized into byte array.

Parameters:
bList[int]

ConfigProto from tensorflow, serialized into byte array

setMinOutputLength(value)[source]#

Sets minimum length of the sequence to be generated.

Parameters:
valueint

Minimum length of the sequence to be generated

setMaxOutputLength(value)[source]#

Sets maximum length of output text.

Parameters:
valueint

Maximum length of output text

setDoSample(value)[source]#

Sets whether or not to use sampling, use greedy decoding otherwise.

Parameters:
valuebool

Whether or not to use sampling; use greedy decoding otherwise

setTemperature(value)[source]#

Sets the value used to module the next token probabilities.

Parameters:
valuefloat

The value used to module the next token probabilities

setTopK(value)[source]#

Sets the number of highest probability vocabulary tokens to keep for top-k-filtering.

Parameters:
valueint

Number of highest probability vocabulary tokens to keep

setTopP(value)[source]#

Sets the top cumulative probability for vocabulary tokens.

If set to float < 1, only the most probable tokens with probabilities that add up to topP or higher are kept for generation.

Parameters:
valuefloat

Cumulative probability for vocabulary tokens

setRepetitionPenalty(value)[source]#

Sets the parameter for repetition penalty. 1.0 means no penalty.

Parameters:
valuefloat

The repetition penalty

References

See Ctrl: A Conditional Transformer Language Model For Controllable Generation for more details.

setNoRepeatNgramSize(value)[source]#

Sets size of n-grams that can only occur once.

If set to int > 0, all ngrams of that size can only occur once.

Parameters:
valueint

N-gram size can only occur once

static loadSavedModel(folder, spark_session, use_openvino=False)[source]#

Loads a locally saved model.

Parameters:
folderstr

Folder of the saved model

spark_sessionpyspark.sql.SparkSession

The current SparkSession

Returns:
CPMTransformer

The restored model

static pretrained(name='llama_2_7b_chat_hf_int4', lang='en', remote_loc=None)[source]#

Downloads and loads a pretrained model.

Parameters:
namestr, optional

Name of the pretrained model, by default “llama_2_7b_chat_hf_int4”

langstr, optional

Language of the pretrained model, by default “en”

remote_locstr, optional

Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.

Returns:
CPMTransformer

The restored model