Source code for sparknlp.annotator.seq2seq.m2m100_transformer

#  Copyright 2017-2024 John Snow Labs
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Contains classes for the M2M100Transformer."""

from sparknlp.common import *


[docs]class M2M100Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): """M2M100 : multilingual translation model M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. The model can directly translate between the 9,900 directions of 100 languages. Pretrained models can be loaded with :meth:`.pretrained` of the companion object: >>> m2m100 = M2M100Transformer.pretrained() \\ ... .setInputCols(["document"]) \\ ... .setOutputCol("generation") The default model is ``"m2m100_418M"``, if no name is provided. For available pretrained models please see the `Models Hub <https://sparknlp.org/models?q=m2m100>`__. ====================== ====================== Input Annotation types Output Annotation type ====================== ====================== ``DOCUMENT`` ``DOCUMENT`` ====================== ====================== Parameters ---------- configProtoBytes ConfigProto from tensorflow, serialized into byte array. minOutputLength Minimum length of the sequence to be generated, by default 0 maxOutputLength Maximum length of output text, by default 20 doSample Whether or not to use sampling; use greedy decoding otherwise, by default False temperature The value used to module the next token probabilities, by default 1.0 topK The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50 topP Top cumulative probability for vocabulary tokens, by default 1.0 If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. repetitionPenalty The parameter for repetition penalty, 1.0 means no penalty. , by default 1.0 noRepeatNgramSize If set to int > 0, all ngrams of that size can only occur once, by default 0 ignoreTokenIds A list of token ids which are ignored in the decoder's output, by default [] srcLang Source Language (Default: `en`) tgtLang Target Language (Default: `fr`) Languages Covered ----- Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn), Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu) References ---------- - `Beyond English-Centric Multilingual Machine Translation <https://arxiv.org/pdf/2010.11125.pdf>`__ - https://github.com/pytorch/fairseq/tree/master/examples/m2m_100 **Paper Abstract:** * Existing work in translation demonstrated the potential of massively multilingual machine translation by training a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model.* Examples -------- >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \\ ... .setInputCol("text") \\ ... .setOutputCol("documents") >>> m2m100 = M2M100Transformer.pretrained("m2m100_418M") \\ ... .setInputCols(["documents"]) \\ ... .setMaxOutputLength(50) \\ ... .setOutputCol("generation") \\ ... .setSrcLang("en") \\ ... .setTgtLang("fr") >>> pipeline = Pipeline().setStages([documentAssembler, m2m100]) >>> data = spark.createDataFrame([["生活就像一盒巧克力。"]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("summaries.generation").show(truncate=False) +-------------------------------------------------------------------------------------------+ |result | +-------------------------------------------------------------------------------------------+ |[ Life is like a box of chocolate.] | +-------------------------------------------------------------------------------------------+ """ name = "M2M100Transformer" inputAnnotatorTypes = [AnnotatorType.DOCUMENT] outputAnnotatorType = AnnotatorType.DOCUMENT configProtoBytes = Param(Params._dummy(), "configProtoBytes", "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", TypeConverters.toListInt) minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt) maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt) doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean) temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat) topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt) topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", typeConverter=TypeConverters.toFloat) repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", typeConverter=TypeConverters.toFloat) noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt) ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt) beamSize = Param(Params._dummy(), "beamSize", "The Number of beams for beam search.", typeConverter=TypeConverters.toInt) srcLang = Param(Params._dummy(), "srcLang", "Source Language (Default: `en`)", typeConverter=TypeConverters.toString) tgtLang = Param(Params._dummy(), "tgtLang", "Target Language (Default: `fr`)", typeConverter=TypeConverters.toString)
[docs] def setIgnoreTokenIds(self, value): """A list of token ids which are ignored in the decoder's output. Parameters ---------- value : List[int] The words to be filtered out """ return self._set(ignoreTokenIds=value)
[docs] def setConfigProtoBytes(self, b): """Sets configProto from tensorflow, serialized into byte array. Parameters ---------- b : List[int] ConfigProto from tensorflow, serialized into byte array """ return self._set(configProtoBytes=b)
[docs] def setMinOutputLength(self, value): """Sets minimum length of the sequence to be generated. Parameters ---------- value : int Minimum length of the sequence to be generated """ return self._set(minOutputLength=value)
[docs] def setMaxOutputLength(self, value): """Sets maximum length of output text. Parameters ---------- value : int Maximum length of output text """ return self._set(maxOutputLength=value)
[docs] def setDoSample(self, value): """Sets whether or not to use sampling, use greedy decoding otherwise. Parameters ---------- value : bool Whether or not to use sampling; use greedy decoding otherwise """ return self._set(doSample=value)
[docs] def setTemperature(self, value): """Sets the value used to module the next token probabilities. Parameters ---------- value : float The value used to module the next token probabilities """ return self._set(temperature=value)
[docs] def setTopK(self, value): """Sets the number of highest probability vocabulary tokens to keep for top-k-filtering. Parameters ---------- value : int Number of highest probability vocabulary tokens to keep """ return self._set(topK=value)
[docs] def setTopP(self, value): """Sets the top cumulative probability for vocabulary tokens. If set to float < 1, only the most probable tokens with probabilities that add up to ``topP`` or higher are kept for generation. Parameters ---------- value : float Cumulative probability for vocabulary tokens """ return self._set(topP=value)
[docs] def setRepetitionPenalty(self, value): """Sets the parameter for repetition penalty. 1.0 means no penalty. Parameters ---------- value : float The repetition penalty References ---------- See `Ctrl: A Conditional Transformer Language Model For Controllable Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ return self._set(repetitionPenalty=value)
[docs] def setNoRepeatNgramSize(self, value): """Sets size of n-grams that can only occur once. If set to int > 0, all ngrams of that size can only occur once. Parameters ---------- value : int N-gram size can only occur once """ return self._set(noRepeatNgramSize=value)
[docs] def setBeamSize(self, value): """Sets the number of beam size for beam search, by default `4`. Parameters ---------- value : int Number of beam size for beam search """ return self._set(beamSize=value)
[docs] def setSrcLang(self, value): """Sets source language. Parameters ---------- value : str Source language """ return self._set(srcLang=value)
[docs] def setTgtLang(self, value): """Sets target language. Parameters ---------- value : str Target language """ return self._set(tgtLang=value)
@keyword_only def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.M2M100Transformer", java_model=None): super(M2M100Transformer, self).__init__(classname=classname, java_model=java_model) self._setDefault(minOutputLength=0, maxOutputLength=200, doSample=False, temperature=1, topK=50, topP=1, repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1, beamSize=1, srcLang="en", tgtLang="fr") @staticmethod
[docs] def loadSavedModel(folder, spark_session, use_openvino=False): """Loads a locally saved model. Parameters ---------- folder : str Folder of the saved model spark_session : pyspark.sql.SparkSession The current SparkSession Returns ------- M2M100Transformer The restored model """ from sparknlp.internal import _M2M100Loader jModel = _M2M100Loader(folder, spark_session._jsparkSession, use_openvino)._java_obj return M2M100Transformer(java_model=jModel)
@staticmethod
[docs] def pretrained(name="m2m100_418M", lang="xx", remote_loc=None): """Downloads and loads a pretrained model. Parameters ---------- name : str, optional Name of the pretrained model, by default "m2m100_418M" lang : str, optional Language of the pretrained model, by default "en" remote_loc : str, optional Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise. Returns ------- M2M100Transformer The restored model """ from sparknlp.pretrained import ResourceDownloader return ResourceDownloader.downloadModel(M2M100Transformer, name, lang, remote_loc)