sparknlp.annotator.seq2seq.m2m100_transformer
#
Contains classes for the M2M100Transformer.
Module Contents#
Classes#
M2M100 : multilingual translation model |
- class M2M100Transformer(classname='com.johnsnowlabs.nlp.annotators.seq2seq.M2M100Transformer', java_model=None)[source]#
M2M100 : multilingual translation model
M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation.
The model can directly translate between the 9,900 directions of 100 languages.
Pretrained models can be loaded with
pretrained()
of the companion object:>>> m2m100 = M2M100Transformer.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("generation")
The default model is
"m2m100_418M"
, if no name is provided. For available pretrained models please see the Models Hub.Input Annotation types
Output Annotation type
DOCUMENT
DOCUMENT
- Parameters:
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
- minOutputLength
Minimum length of the sequence to be generated, by default 0
- maxOutputLength
Maximum length of output text, by default 20
- doSample
Whether or not to use sampling; use greedy decoding otherwise, by default False
- temperature
The value used to module the next token probabilities, by default 1.0
- topK
The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50
- topP
Top cumulative probability for vocabulary tokens, by default 1.0
If set to float < 1, only the most probable tokens with probabilities that add up to
topP
or higher are kept for generation.- repetitionPenalty
The parameter for repetition penalty, 1.0 means no penalty. , by default 1.0
- noRepeatNgramSize
If set to int > 0, all ngrams of that size can only occur once, by default 0
- ignoreTokenIds
A list of token ids which are ignored in the decoder’s output, by default []
- srcLang
Source Language (Default: en)
- tgtLang
Target Language (Default: fr)
- Languages Covered
- —–
- Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba),
- Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian
- (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English
- (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr),
- Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu),
- Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian
- (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it),
- Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn),
- Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian
- (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi
- (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern
- Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto;
- Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd),
- Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian
- (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog
- (tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof
- (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)
References
Paper Abstract:
Existing work in translation demonstrated the potential of massively multilingual machine translation by training
a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model.*
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("documents") >>> m2m100 = M2M100Transformer.pretrained("m2m100_418M") \ ... .setInputCols(["documents"]) \ ... .setMaxOutputLength(50) \ ... .setOutputCol("generation") \ ... .setSrcLang("en") \ ... .setTgtLang("fr") >>> pipeline = Pipeline().setStages([documentAssembler, m2m100]) >>> data = spark.createDataFrame([["生活就像一盒巧克力。"]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("summaries.generation").show(truncate=False) +-------------------------------------------------------------------------------------------+ |result | +-------------------------------------------------------------------------------------------+ |[ Life is like a box of chocolate.] | +-------------------------------------------------------------------------------------------+
- setIgnoreTokenIds(value)[source]#
A list of token ids which are ignored in the decoder’s output.
- Parameters:
- valueList[int]
The words to be filtered out
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
- bList[int]
ConfigProto from tensorflow, serialized into byte array
- setMinOutputLength(value)[source]#
Sets minimum length of the sequence to be generated.
- Parameters:
- valueint
Minimum length of the sequence to be generated
- setMaxOutputLength(value)[source]#
Sets maximum length of output text.
- Parameters:
- valueint
Maximum length of output text
- setDoSample(value)[source]#
Sets whether or not to use sampling, use greedy decoding otherwise.
- Parameters:
- valuebool
Whether or not to use sampling; use greedy decoding otherwise
- setTemperature(value)[source]#
Sets the value used to module the next token probabilities.
- Parameters:
- valuefloat
The value used to module the next token probabilities
- setTopK(value)[source]#
Sets the number of highest probability vocabulary tokens to keep for top-k-filtering.
- Parameters:
- valueint
Number of highest probability vocabulary tokens to keep
- setTopP(value)[source]#
Sets the top cumulative probability for vocabulary tokens.
If set to float < 1, only the most probable tokens with probabilities that add up to
topP
or higher are kept for generation.- Parameters:
- valuefloat
Cumulative probability for vocabulary tokens
- setRepetitionPenalty(value)[source]#
Sets the parameter for repetition penalty. 1.0 means no penalty.
- Parameters:
- valuefloat
The repetition penalty
References
See Ctrl: A Conditional Transformer Language Model For Controllable Generation for more details.
- setNoRepeatNgramSize(value)[source]#
Sets size of n-grams that can only occur once.
If set to int > 0, all ngrams of that size can only occur once.
- Parameters:
- valueint
N-gram size can only occur once
- setBeamSize(value)[source]#
Sets the number of beam size for beam search, by default 4.
- Parameters:
- valueint
Number of beam size for beam search
- static loadSavedModel(folder, spark_session, use_openvino=False)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- M2M100Transformer
The restored model
- static pretrained(name='m2m100_418M', lang='xx', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “m2m100_418M”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- M2M100Transformer
The restored model