Description
The Universal Sentence Encoder encodes text into high-dimensional vectors that can be used for text classification, semantic similarity, clustering and other natural language tasks.
The model is trained and optimized for greater-than-word length text, such as sentences, phrases or short paragraphs. It is trained on a variety of data sources and a variety of tasks with the aim of dynamically accommodating a wide variety of natural language understanding tasks. The input is variable length English text and the output is a 512 dimensional vector. We apply this model to the STS benchmark for semantic similarity, and the results can be seen in the example notebook made available. The universal-sentence-encoder model is trained with a deep averaging network (DAN) encoder.
The details are described in the paper “Universal Sentence Encoder”.
How to use
...
embeddings = UniversalSentenceEncoder.pretrained("tfhub_use", "en") \
.setInputCols("sentence") \
.setOutputCol("sentence_embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I love NLP', 'Many thanks']], ["text"]))
...
val embeddings = UniversalSentenceEncoder.pretrained("tfhub_use", "en")
.setInputCols("sentence")
.setOutputCol("sentence_embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, embeddings))
val data = Seq("I love NLP", "Many thanks").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["I love NLP"]
embeddings_df = nlu.load('en.embed_sentence.tfhub_use').predict(text, output_level='sentence')
embeddings_df
Results
sentence en_embed_sentence_tfhub_use_embeddings
0 I love NLP [0.06498772650957108, 0.01892215944826603, -0....
1 Many thanks [0.0255892276763916, -0.042829226702451706, -0...
Model Information
Model Name: | tfhub_use |
Type: | embeddings |
Compatibility: | Spark NLP 2.4.0 |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [sentence_embeddings] |
Language: | [en] |
Dimension: | 512 |
Case sensitive: | true |
Data Source
The model is imported from https://tfhub.dev/google/universal-sentence-encoder/2