Description
ALBERT is “A Lite” version of BERT, a popular unsupervised language representation learning algorithm. ALBERT uses parameter-reduction techniques that allow for large-scale configurations, overcome previous memory limitations, and achieve better behavior with respect to model degradation. The details are described in the paper “ALBERT: A Lite BERT for Self-supervised Learning of Language Representations.”
How to use
...
embeddings = AlbertEmbeddings.pretrained("albert_large_uncased", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I love NLP']], ["text"]))
...
val embeddings = AlbertEmbeddings.pretrained("albert_large_uncased", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
val data = Seq("I love NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["I love NLP"]
embeddings_df = nlu.load('en.embed.albert.large_uncased').predict(text, output_level='token')
embeddings_df
Results
token en_embed_albert_large_uncased_embeddings
I [0.3967159688472748, -0.6448764801025391, -0.3...
love [1.1107065677642822, -0.2454298734664917, 0.60...
NLP [0.02937467396259308, -0.7092287540435791, -0....
Model Information
Model Name: | albert_large_uncased |
Type: | embeddings |
Compatibility: | Spark NLP 2.5.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [word_embeddings] |
Language: | [en] |
Dimension: | 1024 |
Case sensitive: | false |
Data Source
The model is imported from https://tfhub.dev/google/albert_large/3