Description
XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective. Additionally, XLNet employs Transformer-XL as the backbone model, exhibiting excellent performance for language tasks involving long context. Overall, XLNet achieves state-of-the-art (SOTA) results on various downstream language tasks including question answering, natural language inference, sentiment analysis, and document ranking. The details are described in the paper “XLNet: Generalized Autoregressive Pretraining for Language Understanding”
How to use
...
embeddings = XlnetEmbeddings.pretrained("xlnet_large_cased", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I love NLP']], ["text"]))
...
val embeddings = XlnetEmbeddings.pretrained("xlnet_large_cased", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
val data = Seq("I love NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["I love NLP"]
embeddings_df = nlu.load('en.embed.xlnet_large_cased').predict(text, output_level='token')
embeddings_df
Results
token en_embed_xlnet_large_cased_embeddings
I [0.9742076396942139, -0.6181889772415161, 0.45...
love [-0.7322277426719666, -1.7254987955093384, -0....
NLP [1.6873085498809814, -0.8617655038833618, 0.46...
Model Information
Model Name: | xlnet_large_cased |
Type: | embeddings |
Compatibility: | Spark NLP 2.5.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [word_embeddings] |
Language: | [en] |
Dimension: | 1024 |
Case sensitive: | true |
Data Source
The model is imported from https://github.com/zihangdai/xlnet