Description
This model annotates the part of speech of tokens in a text. The parts of speech annotated include PRON (pronoun), CCONJ (coordinating conjunction), and 15 others. The part of speech model is useful for extracting the grammatical structure of a piece of text automatically.
Open in Colab Download Copy S3 URI
How to use
...
pos = PerceptronModel.pretrained("pos_ud_gsd", "zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("pos")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, pos])
light_pipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF("text")))
results = light_pipeline.fullAnnotate("除了担任北方国王之外,约翰·斯诺(John Snow)是一位英国医师,也是麻醉和医疗卫生发展的领导者。")
...
val pos = PerceptronModel.pretrained("pos_ud_gsd", "zh")
.setInputCols(Array("document", "token"))
.setOutputCol("pos")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, pos))
val data = Seq("除了担任北方国王之外,约翰·斯诺(John Snow)是一位英国医师,也是麻醉和医疗卫生发展的领导者。").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["""除了担任北方国王之外,约翰·斯诺(John Snow)是一位英国医师,也是麻醉和医疗卫生发展的领导者。"""]
pos_df = nlu.load('zh.pos.ud_gsd').predict(text, output_level='token')
pos_df
Results
[Row(annotatorType='pos', begin=0, end=20, result='NOUN', metadata={'word': '除了担任北方国王之外,约翰·斯诺(John'}),
Row(annotatorType='pos', begin=22, end=50, result='X', metadata={'word': 'Snow)是一位英国医师,也是麻醉和医疗卫生发展的领导者。'}),
...]
Model Information
Model Name: | pos_ud_gsd |
Type: | pos |
Compatibility: | Spark NLP 2.5.0+ |
Edition: | Official |
Input labels: | [token] |
Output labels: | [pos] |
Language: | zh |
Case sensitive: | false |
License: | Open Source |
Data Source
The model is imported from https://universaldependencies.org
PREVIOUSChinese Lemmatizer