Description
This model annotates the part of speech of tokens in a text. The parts of speech annotated include PRON (pronoun), CCONJ (coordinating conjunction), and 15 others. The part of speech model is useful for extracting the grammatical structure of a piece of text automatically.
Open in Colab Download Copy S3 URI
How to use
...
pos = PerceptronModel.pretrained("pos_ud_pdt", "cs") \
.setInputCols(["document", "token"]) \
.setOutputCol("pos")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, pos])
light_pipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF("text")))
results = light_pipeline.fullAnnotate("Kromě toho, že je králem severu, je John Snow anglickým lékařem a lídrem ve vývoji anestezie a lékařské hygieny.")
...
val pos = PerceptronModel.pretrained("pos_ud_pdt", "cs")
.setInputCols(Array("document", "token"))
.setOutputCol("pos")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, pos))
val data = Seq("Kromě toho, že je králem severu, je John Snow anglickým lékařem a lídrem ve vývoji anestezie a lékařské hygieny.").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["""Kromě toho, že je králem severu, je John Snow anglickým lékařem a lídrem ve vývoji anestezie a lékařské hygieny."""]
pos_df = nlu.load('cs.pos.ud_pdt').predict(text, output_level='token')
pos_df
Results
[Row(annotatorType='pos', begin=0, end=4, result='ADP', metadata={'word': 'Kromě'}),
Row(annotatorType='pos', begin=6, end=9, result='DET', metadata={'word': 'toho'}),
Row(annotatorType='pos', begin=10, end=10, result='PUNCT', metadata={'word': ','}),
Row(annotatorType='pos', begin=12, end=13, result='SCONJ', metadata={'word': 'že'}),
Row(annotatorType='pos', begin=15, end=16, result='AUX', metadata={'word': 'je'}),
...]
Model Information
Model Name: | pos_ud_pdt |
Type: | pos |
Compatibility: | Spark NLP 2.5.0+ |
Edition: | Official |
Input labels: | [token] |
Output labels: | [pos] |
Language: | cs |
Case sensitive: | false |
License: | Open Source |
Data Source
The model is imported from https://universaldependencies.org