Description
Classify if a text contains sarcasm.
Predicted Entities
normal, sarcasm
Live Demo
Open in Colab
Download
Copy S3 URI
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
use = UniversalSentenceEncoder.pretrained(lang="en") \
.setInputCols(["document"])\
.setOutputCol("sentence_embeddings")
document_classifier = ClassifierDLModel.pretrained('classifierdl_use_sarcasm', 'en') \
.setInputCols(["document", "sentence_embeddings"]) \
.setOutputCol("class")
nlpPipeline = Pipeline(stages=[documentAssembler, use, document_classifier])
light_pipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF("text")))
annotations = light_pipeline.fullAnnotate('If I could put into words how much I love waking up at am on Tuesdays I would')
val documentAssembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val use = UniversalSentenceEncoder.pretrained(lang="en")
.setInputCols(Array("document"))
.setOutputCol("sentence_embeddings")
val document_classifier = ClassifierDLModel.pretrained("classifierdl_use_sarcasm", "en")
.setInputCols(Array("document", "sentence_embeddings"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, use, document_classifier))
val data = Seq("If I could put into words how much I love waking up at am on Tuesdays I would").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["""If I could put into words how much I love waking up at am on Tuesdays I would"""]
sarcasm_df = nlu.load('classify.sarcasm.use').predict(text, output_level='document')
sarcasm_df[["document", "sarcasm"]]
Results
+--------------------------------------------------------------------------------------------------------+------------+
|document                                                                                                |class       |
+--------------------------------------------------------------------------------------------------------+------------+
|If I could put into words how much I love waking up at am on Tuesdays I would                           | sarcasm    |
+--------------------------------------------------------------------------------------------------------+------------+
Model Information
| Model Name | classifierdl_use_sarcasm | 
| Model Class | ClassifierDLModel | 
| Spark Compatibility | 2.5.3 | 
| Spark NLP Compatibility | 2.4 | 
| License | open source | 
| Edition | public | 
| Input Labels | [document, sentence_embeddings] | 
| Output Labels | [class] | 
| Language | en | 
| Upstream Dependencies | with tfhub_use | 
Data Source
This model is trained on the sarcam detection dataset. https://github.com/MirunaPislar/Sarcasm-Detection/tree/master/res/datasets/riloff
Benchmarking
Accuracy of label sarcasm with USE Embeddings is 0.84
precision    recall  f1-score   support
0       0.84      1.00      0.91       495
1       0.00      0.00      0.00        93
accuracy                           0.84       588
macro avg       0.42      0.50      0.46       588
weighted avg       0.71      0.84      0.77       588
PREVIOUSFake News Classifier
NEXTSpam Classifier