Latvian Lemmatizer

Description

This model uses context and language knowledge to assign all forms and inflections of a word to a single root. This enables the pipeline to treat the past and present tense of a verb, for example, as the same word instead of two completely different words. The lemmatizer takes into consideration the context surrounding a word to determine which root is correct when the word form alone is ambiguous.

Open in Colab Download Copy S3 URI

How to use

...
lemmatizer = LemmatizerModel.pretrained("lemma", "lv") \
.setInputCols(["token"]) \
.setOutputCol("lemma")
nlp_pipeline = Pipeline(stages=[document_assembler, tokenizer, lemmatizer])
light_pipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF("text")))
results = light_pipeline.fullAnnotate("Džons Snovs ir ne tikai ziemeļu karalis, bet arī angļu ārsts un anestēzijas un medicīniskās higiēnas attīstības līderis.")
...
val lemmatizer = LemmatizerModel.pretrained("lemma", "lv")
.setInputCols(Array("token"))
.setOutputCol("lemma")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, lemmatizer))
val data = Seq("Džons Snovs ir ne tikai ziemeļu karalis, bet arī angļu ārsts un anestēzijas un medicīniskās higiēnas attīstības līderis.").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu

text = ["""Džons Snovs ir ne tikai ziemeļu karalis, bet arī angļu ārsts un anestēzijas un medicīniskās higiēnas attīstības līderis."""]
lemma_df = nlu.load('lv.lemma').predict(text, output_level='document')
lemma_df.lemma.values[0]

Results

[Row(annotatorType='token', begin=0, end=4, result='Džons', metadata={'sentence': '0'}, embeddings=[]),
Row(annotatorType='token', begin=6, end=10, result='Snovs', metadata={'sentence': '0'}, embeddings=[]),
Row(annotatorType='token', begin=12, end=13, result='būt', metadata={'sentence': '0'}, embeddings=[]),
Row(annotatorType='token', begin=15, end=16, result='ne', metadata={'sentence': '0'}, embeddings=[]),
Row(annotatorType='token', begin=18, end=22, result='tikai', metadata={'sentence': '0'}, embeddings=[]),
...]

Model Information

Model Name: lemma
Type: lemmatizer
Compatibility: Spark NLP 2.5.5+
Edition: Official
Input labels: [token]
Output labels: [lemma]
Language: lv
Case sensitive: false
License: Open Source

Data Source

The model is imported from https://universaldependencies.org