Part of Speech for Irish

Description

This model annotates the part of speech of tokens in a text. The parts of speech annotated include PRON (pronoun), CCONJ (coordinating conjunction), and 15 others. The part of speech model is useful for extracting the grammatical structure of a piece of text automatically.

Open in Colab Download Copy S3 URI

How to use

...
pos = PerceptronModel.pretrained("pos_ud_idt", "ga") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("pos")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, pos])
light_pipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF("text")))
results = light_pipeline.fullAnnotate("Seachas a bheith ina rí ar an tuaisceart, is dochtúir Sasanach é John Snow agus ceannaire i bhforbairt ainéistéise agus sláinteachas míochaine.")
...
val pos = PerceptronModel.pretrained("pos_ud_idt", "ga")
    .setInputCols(Array("document", "token"))
    .setOutputCol("pos")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, pos))
val data = Seq("Seachas a bheith ina rí ar an tuaisceart, is dochtúir Sasanach é John Snow agus ceannaire i bhforbairt ainéistéise agus sláinteachas míochaine.").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu

text = ["""Seachas a bheith ina rí ar an tuaisceart, is dochtúir Sasanach é John Snow agus ceannaire i bhforbairt ainéistéise agus sláinteachas míochaine."""]
pos_df = nlu.load('ga.pos').predict(text, output_level='token')
pos_df

Results

[Row(annotatorType='pos', begin=0, end=6, result='ADP', metadata={'word': 'Seachas'}),
Row(annotatorType='pos', begin=8, end=8, result='PART', metadata={'word': 'a'}),
Row(annotatorType='pos', begin=10, end=15, result='NOUN', metadata={'word': 'bheith'}),
Row(annotatorType='pos', begin=17, end=19, result='ADP', metadata={'word': 'ina'}),
Row(annotatorType='pos', begin=21, end=22, result='NOUN', metadata={'word': 'rí'}),
...]

Model Information

Model Name: pos_ud_idt
Type: pos
Compatibility: Spark NLP 2.5.5+
Edition: Official
Input labels: [token]
Output labels: [pos]
Language: ga
Case sensitive: false
License: Open Source

Data Source

The model is imported from https://universaldependencies.org